294 research outputs found

    A Novel Dataset for Non-Destructive Inspection of Handwritten Documents

    Full text link
    Forensic handwriting examination is a branch of Forensic Science that aims to examine handwritten documents in order to properly define or hypothesize the manuscript's author. These analysis involves comparing two or more (digitized) documents through a comprehensive comparison of intrinsic local and global features. If a correlation exists and specific best practices are satisfied, then it will be possible to affirm that the documents under analysis were written by the same individual. The need to create sophisticated tools capable of extracting and comparing significant features has led to the development of cutting-edge software with almost entirely automated processes, improving the forensic examination of handwriting and achieving increasingly objective evaluations. This is made possible by algorithmic solutions based on purely mathematical concepts. Machine Learning and Deep Learning models trained with specific datasets could turn out to be the key elements to best solve the task at hand. In this paper, we proposed a new and challenging dataset consisting of two subsets: the first consists of 21 documents written either by the classic ``pen and paper" approach (and later digitized) and directly acquired on common devices such as tablets; the second consists of 362 handwritten manuscripts by 124 different people, acquired following a specific pipeline. Our study pioneered a comparison between traditionally handwritten documents and those produced with digital tools (e.g., tablets). Preliminary results on the proposed datasets show that 90% classification accuracy can be achieved on the first subset (documents written on both paper and pen and later digitized and on tablets) and 96% on the second portion of the data. The datasets are available at https://iplab.dmi.unict.it/mfs/forensic-handwriting-analysis/novel-dataset-2023/.Comment: arXiv admin note: text overlap with arXiv:2310.1121

    Automatic Signature Verification: The State of the Art

    Full text link

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Multi-feature approach for writer-independent offline signature verification

    Get PDF
    Some of the fundamental problems facing handwritten signature verification are the large number of users, the large number of features, the limited number of reference signatures for training, the high intra-personal variability of the signatures and the unavailability of forgeries as counterexamples. This research first presents a survey of offline signature verification techniques, focusing on the feature extraction and verification strategies. The goal is to present the most important advances, as well as the current challenges in this field. Of particular interest are the techniques that allow for designing a signature verification system based on a limited amount of data. Next is presented a novel offline signature verification system based on multiple feature extraction techniques, dichotomy transformation and boosting feature selection. Using multiple feature extraction techniques increases the diversity of information extracted from the signature, thereby producing features that mitigate intra-personal variability, while dichotomy transformation ensures writer-independent classification, thus relieving the verification system from the burden of a large number of users. Finally, using boosting feature selection allows for a low cost writer-independent verification system that selects features while learning. As such, the proposed system provides a practical framework to explore and learn from problems with numerous potential features. Comparison of simulation results from systems found in literature confirms the viability of the proposed system, even when only a single reference signature is available. The proposed system provides an efficient solution to a wide range problems (eg. biometric authentication) with limited training samples, new training samples emerging during operations, numerous classes, and few or no counterexamples

    Deep Learning Detected Nutrient Deficiency in Chili Plant

    Get PDF
    Chili is a staple commodity that also affects the Indonesian economy due to high market demand. Proven in June 2019, chili is a contributor to Indonesia's inflation of 0.20% from 0.55%. One factor is crop failure due to malnutrition. In this study, the aim is to explore Deep Learning Technology in agriculture to help farmers be able to diagnose their plants, so that their plants are not malnourished. Using the RCNN algorithm as the architecture of this system. Use 270 datasets in 4 categories. The dataset used is primary data with chili samples in Boyolali Regency, Indonesia. The chili we use are curly chili. The results of this study are computers that can recognize nutrient deficiencies in chili plants based on image input received with the greatest testing accuracy of 82.61% and has the best mAP value of 15.57%
    corecore