25,049 research outputs found

    Predicting Fraud in Mobile Phone Usage Using Artificial Neural Networks

    Get PDF
    Mobile phone usage involves the use of wireless communication devices that can be carried anywhere, as they require no physical connection to any external wires to work. However, mobile technology is not without its own problems. Fraud is prevalent in both fixed and mobile networks of all technologies. Frauds have plagued the telecommunication industries, financial institutions and other organizations for a long time. The aim of this research work and research publication is to apply 3 different neural network models (Fuzzy, Radial Basis and the Feedforward) to the prediction of fraud in real-life data of phone usage and also analyze and evaluate their performances with respect to their predicting capability. From the analysis and model predictability experiment carried out in this scientific research work, it was discovered that the fuzzy network model had the minimum error generated in its fraud predicting capability. Thus, its performance in terms of the error generated in this fraud prediction experiment showed that its NMSE (Normalized mean squared error) for the fraud predicted was 1.98264609. The mean absolute error (M AE = 15.00987244) for its fraud prediction was also the least; this showed that the fuzzy model fraud predictability was much better than the other two models

    NeuRoute: Predictive Dynamic Routing for Software-Defined Networks

    Full text link
    This paper introduces NeuRoute, a dynamic routing framework for Software Defined Networks (SDN) entirely based on machine learning, specifically, Neural Networks. Current SDN/OpenFlow controllers use a default routing based on Dijkstra algorithm for shortest paths, and provide APIs to develop custom routing applications. NeuRoute is a controller-agnostic dynamic routing framework that (i) predicts traffic matrix in real time, (ii) uses a neural network to learn traffic characteristics and (iii) generates forwarding rules accordingly to optimize the network throughput. NeuRoute achieves the same results as the most efficient dynamic routing heuristic but in much less execution time.Comment: Accepted for CNSM 201

    Development of a neural network mathematical model for demand forecasting in fluctuating markets

    Get PDF
    Research has shown that Neural Networks (NNs) when trained appropriately are the best forecasting system compared to conventional techniques. Research has shown that there is no system to accurately forecast sudden changes in demand for a given product. This paper reports on the development of a recovery method when a sudden change in demand has taken place. This error in forecasting demand leads to either excessive inventories of the product or shortages of it and can lead to substantial financial losses for the company producing or marketing the product. Two recovery methods have been developed and described in this paper: RZ recovery and Exponential Smoothing (ES). In the RZ recovery once a sudden change has taken place, a ‘soft’ Poke-Yoke (PY) system is setup warning the company that the normal forecasting system can no longer be relied upon and a recovery system needs to be initiated, with re-forecasting initiated

    Software Aging Analysis of Web Server Using Neural Networks

    Full text link
    Software aging is a phenomenon that refers to progressive performance degradation or transient failures or even crashes in long running software systems such as web servers. It mainly occurs due to the deterioration of operating system resource, fragmentation and numerical error accumulation. A primitive method to fight against software aging is software rejuvenation. Software rejuvenation is a proactive fault management technique aimed at cleaning up the system internal state to prevent the occurrence of more severe crash failures in the future. It involves occasionally stopping the running software, cleaning its internal state and restarting it. An optimized schedule for performing the software rejuvenation has to be derived in advance because a long running application could not be put down now and then as it may lead to waste of cost. This paper proposes a method to derive an accurate and optimized schedule for rejuvenation of a web server (Apache) by using Radial Basis Function (RBF) based Feed Forward Neural Network, a variant of Artificial Neural Networks (ANN). Aging indicators are obtained through experimental setup involving Apache web server and clients, which acts as input to the neural network model. This method is better than existing ones because usage of RBF leads to better accuracy and speed in convergence.Comment: 11 pages, 8 figures, 1 table; International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.3, May 201

    Software Reliability prediction using Ensemble Model

    Get PDF
    Software Reliability is the key factor of software quality estimation and prediction during testing period. We have implemented three models such as Radial Basis Function Neural Network (RBFNN) model, Ensemble model based on two types Feed Forward Neural Networks and one Radial Basis Function Neural Network and Radial basis function Neural Network Ensembles (RNNE) model for Software reliability prediction over five benchmark datasets. We have used Bayesian regularization method on all three models to avoid over-fitting problem and generalization of the neural network. We have been used two types of meaningful performance measures such as Relative Error (RE) and Average Errors (AE) for software reliability prediction. The results of all three proposed models have been compared with some traditional models such as Duane model and Artificial neural networks like Feed Forward Neural Network (FFNN) model. The experimental result shows that the nonparametric growth model called Ensemble model (multiple predictors) shows best minimal error than parametric model. Finally, It has been observed that the multiple predictors like Ensemble model always shows the best performance than single predictor like artificial neural network and some other traditional neural networ
    corecore