5,546 research outputs found

    Applications of perfect difference codes in fiber-optics and wireless optical code-division multiplexing/multiple-access systems

    Get PDF
    After establishing itself in the radio domain, Spread spectrum code-division multiplexing/multiple-access (CDMA) has seen a recent upsurge in optical domain as well. Due to its fairness, flexibility, service differentiation and increased inherent security, CDMA is proved to be more suitable for the bursty nature of local area networks than synchronous multiplexing techniques like Frequency/Wavelength Division Multiplexing (F/WDM) and Time Division Multiplexing (TDM). In optical domain, CDMA techniques are commonly known as Optical-CDMA (O-CDMA). All optical CDMA systems are plagued with the problem of multiple-access interference (MAI). Spectral amplitude coding (SAC) is one of the techniques used in the literature to deal with the problem of MAI. The choice of spreading code in any CDMA system is another way to ensure the successful recovery of data at the receiving end by minimizing the effect of MAI and it also dictates the hardware design of the encoder and decoder. This thesis focuses on the efficient design of encoding and decoding hardware. Perfect difference codes (PDC) are chosen as spreading sequences due to their good correlation properties. In most of the literature, evaluation of error probability is based on the assumptions of ideal conditions. Such assumptions ignore major physical impairments such as power splitting losses at the multiplexers of transmitters and receivers, and gain losses at the receivers, which may in practice be an overestimate or underestimate of the actual probability of error. This thesis aims to investigate thoroughly with the consideration of practical impairments the applications of PDCs and other spreading sequences in optical communications systems based on spectral-amplitude coding and utilizing codedivision as multiplexing/multiple-access technique. This work begins with a xix general review of optical CDMA systems. An open-ended practical approach has been used to evaluate the actual error probabilities of OCDM/A systems under study. It has been concluded from results that mismatches in the gains of photodetectors, namely avalanche photodiode (APDs), used at the receiver side and uniformity loss in the optical splitters results in the inaccurate calculation of threshold level used to detect the data and can seriously degrade the system bit error rate (BER) performance. This variation in the threshold level can be compensated by employing techniques which maintain a constant interference level so that the decoding architecture does not have to estimate MAI every time to make a data bit decision or by the use of balanced sequences. In this thesis, as a solution to the above problem, a novel encoding and decoding architecture is presented for perfect difference codes based on common zero code technique which maintains a constant interference level at all instants in CDM system and thus relieves the need of estimating interference. The proposed architecture only uses single multiplexer at the transmitters for all users in the system and a simple correlation based receiver for each user. The proposed configuration not only preserves the ability of MAI in Spectral-Amplitude Coding SAC-OCDM system, but also results in a low cost system with reduced complexity. The results show that by using PDCs in such system, the influence of MAI caused by other users can be reduced, and the number of active users can be increased significantly. Also a family of novel spreading sequences are constructed called Manchestercoded Modified Legendre codes (MCMLCs) suitable for SAC based OCDM systems. MCMLCs are designed to be used for both single-rate and Multirate systems. First the construction of MCMLCs is presented and then the bit error rate performance is analyzed. Finally the proposed encoding/decoding architecture utilizing perfect difference codes is applied in wireless infrared environment and the performance is found to be superior to other codes

    Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Get PDF
    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.Comment: 11 pages, 10 figure

    CoBe -- Coded Beacons for Localization, Object Tracking, and SLAM Augmentation

    Full text link
    This paper presents a novel beacon light coding protocol, which enables fast and accurate identification of the beacons in an image. The protocol is provably robust to a predefined set of detection and decoding errors, and does not require any synchronization between the beacons themselves and the optical sensor. A detailed guide is then given for developing an optical tracking and localization system, which is based on the suggested protocol and readily available hardware. Such a system operates either as a standalone system for recovering the six degrees of freedom of fast moving objects, or integrated with existing SLAM pipelines providing them with error-free and easily identifiable landmarks. Based on this guide, we implemented a low-cost positional tracking system which can run in real-time on an IoT board. We evaluate our system's accuracy and compare it to other popular methods which utilize the same optical hardware, in experiments where the ground truth is known. A companion video containing multiple real-world experiments demonstrates the accuracy, speed, and applicability of the proposed system in a wide range of environments and real-world tasks. Open source code is provided to encourage further development of low-cost localization systems integrating the suggested technology at its navigation core

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99
    • 

    corecore