4 research outputs found

    Unsupervised learning for concept detection in medical images: a comparative analysis

    Full text link
    As digital medical imaging becomes more prevalent and archives increase in size, representation learning exposes an interesting opportunity for enhanced medical decision support systems. On the other hand, medical imaging data is often scarce and short on annotations. In this paper, we present an assessment of unsupervised feature learning approaches for images in the biomedical literature, which can be applied to automatic biomedical concept detection. Six unsupervised representation learning methods were built, including traditional bags of visual words, autoencoders, and generative adversarial networks. Each model was trained, and their respective feature space evaluated using images from the ImageCLEF 2017 concept detection task. We conclude that it is possible to obtain more powerful representations with modern deep learning approaches, in contrast with previously popular computer vision methods. Although generative adversarial networks can provide good results, they are harder to succeed in highly varied data sets. The possibility of semi-supervised learning, as well as their use in medical information retrieval problems, are the next steps to be strongly considered

    Content Based Image Retrieval (CBIR) in Remote Clinical Diagnosis and Healthcare

    Full text link
    Content-Based Image Retrieval (CBIR) locates, retrieves and displays images alike to one given as a query, using a set of features. It demands accessible data in medical archives and from medical equipment, to infer meaning after some processing. A problem similar in some sense to the target image can aid clinicians. CBIR complements text-based retrieval and improves evidence-based diagnosis, administration, teaching, and research in healthcare. It facilitates visual/automatic diagnosis and decision-making in real-time remote consultation/screening, store-and-forward tests, home care assistance and overall patient surveillance. Metrics help comparing visual data and improve diagnostic. Specially designed architectures can benefit from the application scenario. CBIR use calls for file storage standardization, querying procedures, efficient image transmission, realistic databases, global availability, access simplicity, and Internet-based structures. This chapter recommends important and complex aspects required to handle visual content in healthcare.Comment: 28 pages, 6 figures, Book Chapter from "Encyclopedia of E-Health and Telemedicine

    Image Annotation and Topic Extraction Using Super-Word Latent Dirichlet

    Get PDF
    This research presents a multi-domain solution that uses text and images to iteratively improve automated information extraction. Stage I uses local text surrounding an embedded image to provide clues that help rank-order possible image annotations. These annotations are forwarded to Stage II, where the image annotations from Stage I are used as highly-relevant super-words to improve extraction of topics. The model probabilities from the super-words in Stage II are forwarded to Stage III where they are used to refine the automated image annotation developed in Stage I. All stages demonstrate improvement over existing equivalent algorithms in the literature
    corecore