63,673 research outputs found
Measuring constructive alignment: an alignment metric to guide good practice
We present a computational model that represents and computes the level to which an educational design is constructively aligned. The model is able to provide ‘alignment metrics’ for both holistic and individual aspects of a programme or module design. A systemic and structural perspective of teaching and learning underpins the design of the computational model whereby Bloom’s taxonomy is used as a basis for categorising the core components of a teaching system and some basic principles of generative linguistics are borrowed for representing alignment structures and relationships. The degree of alignment is computed using Set theory and linear algebra. The model presented forms the main processing framework of a software tool currently being developed to facilitate teachers to systematically and consistently produce constructively aligned programmes of teaching and learning. It is envisaged that the model will have broad appeal as it allows the quality of educational designs to be measured and works on the principle of ‘practice techniques’ and ‘learning elicited’ as opposed to content
Software agents in music and sound art research/creative work: Current state and a possible direction
Composers, musicians and computer scientists have begun to use software-based agents to create music and sound art in both linear and non-linear (non-predetermined form and/or content) idioms, with some robust approaches now drawing on various disciplines. This paper surveys recent work: agent technology is first introduced, a theoretical framework for its use in creating music/sound art works put forward, and an overview of common approaches then given. Identifying areas of neglect in recent research, a possible direction for further work is then briefly explored. Finally, a vision for a new hybrid model that integrates non-linear, generative, conversational and affective perspectives on interactivity is proposed
Role of Artificial Intelligence (AI) art in care of ageing society: focus on dementia
open access articleBackground: Art enhances both physical and mental health wellbeing. The health
benefits include reduction in blood pressure, heart rate, pain perception and briefer
inpatient stays, as well as improvement of communication skills and self-esteem. In
addition to these, people living with dementia benefit from reduction of their noncognitive,
behavioural changes, enhancement of their cognitive capacities and being
socially active.
Methods: The current study represents a narrative general literature review on
available studies and knowledge about contribution of Artificial Intelligence (AI) in
creative arts.
Results: We review AI visual arts technologies, and their potential for use among
people with dementia and care, drawing on similar experiences to date from
traditional art in dementia care.
Conclusion: The virtual reality, installations and the psychedelic properties of the AI
created art provide a new venue for more detailed research about its therapeutic use in
dementia
Artificial intelligence in the cyber domain: Offense and defense
Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41
Building Machines That Learn and Think Like People
Recent progress in artificial intelligence (AI) has renewed interest in
building systems that learn and think like people. Many advances have come from
using deep neural networks trained end-to-end in tasks such as object
recognition, video games, and board games, achieving performance that equals or
even beats humans in some respects. Despite their biological inspiration and
performance achievements, these systems differ from human intelligence in
crucial ways. We review progress in cognitive science suggesting that truly
human-like learning and thinking machines will have to reach beyond current
engineering trends in both what they learn, and how they learn it.
Specifically, we argue that these machines should (a) build causal models of
the world that support explanation and understanding, rather than merely
solving pattern recognition problems; (b) ground learning in intuitive theories
of physics and psychology, to support and enrich the knowledge that is learned;
and (c) harness compositionality and learning-to-learn to rapidly acquire and
generalize knowledge to new tasks and situations. We suggest concrete
challenges and promising routes towards these goals that can combine the
strengths of recent neural network advances with more structured cognitive
models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary
proposals (until Nov. 22, 2016).
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar
Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?
After being collected for patient care, Observational Health Data (OHD) can
further benefit patient well-being by sustaining the development of health
informatics and medical research. Vast potential is unexploited because of the
fiercely private nature of patient-related data and regulations to protect it.
Generative Adversarial Networks (GANs) have recently emerged as a
groundbreaking way to learn generative models that produce realistic synthetic
data. They have revolutionized practices in multiple domains such as
self-driving cars, fraud detection, digital twin simulations in industrial
sectors, and medical imaging.
The digital twin concept could readily apply to modelling and quantifying
disease progression. In addition, GANs posses many capabilities relevant to
common problems in healthcare: lack of data, class imbalance, rare diseases,
and preserving privacy. Unlocking open access to privacy-preserving OHD could
be transformative for scientific research. In the midst of COVID-19, the
healthcare system is facing unprecedented challenges, many of which of are data
related for the reasons stated above.
Considering these facts, publications concerning GAN applied to OHD seemed to
be severely lacking. To uncover the reasons for this slow adoption, we broadly
reviewed the published literature on the subject. Our findings show that the
properties of OHD were initially challenging for the existing GAN algorithms
(unlike medical imaging, for which state-of-the-art model were directly
transferable) and the evaluation synthetic data lacked clear metrics.
We find more publications on the subject than expected, starting slowly in
2017, and since then at an increasing rate. The difficulties of OHD remain, and
we discuss issues relating to evaluation, consistency, benchmarking, data
modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and
glossary, 51 in total. Inclusion of a large number of recent publications and
expansion of the discussion accordingl
- …
