37 research outputs found

    Identification of protein coding regions in genomic DNA using fuzzy Cellular Automata

    Get PDF
    Genes carry the instructions for making proteins that are found in a cell as a specific sequence of nucleotides that are found in DNA molecules.But, the regions of these genes that code for proteins may occupy only a small region of the sequence. Identifying the coding regions play a vital role in understanding these genes.In this paper we propose a Cellular Automata (CA)based pattern classifier to identify the coding region of a DNA sequence.CA is simple, efficient and produces more accurate classifier than that have previously been obtained for a range of different sequence lengths.Experimental results confirm the scalability of the proposed FCA based classifier to handle large volume of datasets irrespective of the number of classes, tuples and attributes.Good classification accuracy has been established

    Proceedings of AUTOMATA 2010: 16th International workshop on cellular automata and discrete complex systems

    Get PDF
    International audienceThese local proceedings hold the papers of two catgeories: (a) Short, non-reviewed papers (b) Full paper

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Proceedings of AUTOMATA 2011 : 17th International Workshop on Cellular Automata and Discrete Complex Systems

    Get PDF
    International audienceThe proceedings contain full (reviewed) papers and short (non reviewed) papers that were presented at the workshop

    Predicting potential customer needs and wants for agile design and manufacture in an industry 4.0 environment

    Get PDF
    Manufacturing is currently experiencing a paradigm shift in the way that products are designed, produced and serviced. Such changes are brought about mainly by the extensive use of the Internet and digital technologies. As a result of this shift, a new industrial revolution is emerging, termed “Industry 4.0” (i4), which promises to accommodate mass customisation at a mass production cost. For i4 to become a reality, however, multiple challenges need to be addressed, highlighting the need for design for agile manufacturing and, for this, a framework capable of integrating big data analytics arising from the service end, business informatics through the manufacturing process, and artificial intelligence (AI) for the entire manufacturing value chain. This thesis attempts to address these issues, with a focus on the need for design for agile manufacturing. First, the state of the art in this field of research is reviewed on combining cutting-edge technologies in digital manufacturing with big data analysed to support agile manufacturing. Then, the work is focused on developing an AI-based framework to address one of the customisation issues in smart design and agile manufacturing, that is, prediction of potential customer needs and wants. With this framework, an AI-based approach is developed to predict design attributes that would help manufacturers to decide the best virtual designs to meet emerging customer needs and wants predictively. In particular, various machine learning approaches are developed to help explain at least 85% of the design variance when building a model to predict potential customer needs and wants. These approaches include k-means clustering, self-organizing maps, fuzzy k-means clustering, and decision trees, all supporting a vector machine to evaluate and extract conscious and subconscious customer needs and wants. A model capable of accurately predicting customer needs and wants for at least 85% of classified design attributes is thus obtained. Further, an analysis capable of determining the best design attributes and features for predicting customer needs and wants is also achieved. As the information analysed can be utilized to advise the selection of desired attributes, it is fed back in a closed-loop of the manufacturing value chain: design → manufacture → management/service → → → design... For this, a total of 4 case studies are undertaken to test and demonstrate the efficacy and effectiveness of the framework developed. These case studies include: 1) an evaluation model of consumer cars with multiple attributes including categorical and numerical ones; 2) specifications of automotive vehicles in terms of various characteristics including categorical and numerical instances; 3) fuel consumptions of various car models and makes, taking into account a desire for low fuel costs and low CO2 emissions; and 4) computer parts design for recommending the best design attributes when buying a computer. The results show that the decision trees, as a machine learning approach, work best in predicting customer needs and wants for smart design. With the tested framework and methodology, this thesis overall presents a holistic attempt to addressing the missing gap between manufacture and customisation, that is meeting customer needs and wants. Effective ways of achieving customization for i4 and smart manufacturing are identified. This is achieved through predicting potential customer needs and wants and applying the prediction at the product design stage for agile manufacturing to meet individual requirements at a mass production cost. Such agility is one key element in realising Industry 4.0. At the end, this thesis contributes to improving the process of analysing the data to predict potential customer needs and wants to be used as inputs to customizing product designs agilely

    Multilevel mixed-type data analysis for validating partitions of scrapie isolates

    Get PDF
    The dissertation arises from a joint study with the Department of Food Safety and Veterinary Public Health of the Istituto Superiore di Sanità. The aim is to investigate and validate the existence of distinct strains of the scrapie disease taking into account the availability of a priori benchmark partition formulated by researchers. Scrapie of small ruminants is caused by prions, which are unconventional infectious agents of proteinaceous nature a ecting humans and animals. Due to the absence of nucleic acids, which precludes direct analysis of strain variation by molecular methods, the presence of di erent sheep scrapie strains is usually investigated by bioassay in laboratory rodents. Data are collected by an experimental study on scrapie conducted at the Istituto Superiore di Sanità by experimental transmission of scrapie isolates to bank voles. We aim to discuss the validation of a given partition in a statistical classification framework using a multi-step procedure. Firstly, we use unsupervised classification to see how alternative clustering results match researchers’ understanding of the heterogeneity of the isolates. We discuss whether and how clustering results can be eventually exploited to extend the preliminary partition elicited by researchers. Then we motivate the subsequent partition validation based on the predictive performance of several supervised classifiers. Our data-driven approach contains two main methodological original contributions. We advocate the use of partition validation measures to investigate a given benchmark partition: firstly we discuss the issue of how the data can be used to evaluate a preliminary benchmark partition and eventually modify it with statistical results to find a conclusive partition that could be used as a “gold standard” in future studies. Moreover, collected data have a multilevel structure and for each lower-level unit, mixed-type data are available. Each step in the procedure is then adapted to deal with multilevel mixed-type data. We extend distance-based clustering algorithms to deal with multilevel mixed-type data. Whereas in supervised classification we propose a two-step approach to classify the higher-level units starting from the lower-level observations. In this framework, we also need to define an ad-hoc cross validation algorithm

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore