1 research outputs found

    ์„ํƒ„ํ™”๋ ฅ๋ฐœ์ „์†Œ ํ›„์ฒ˜๋ฆฌ ๊ณต์ • ์„ ํƒ์ ์ด‰๋งคํ™˜์›์žฅ์น˜ ๋‚ด์˜ ์‹คํ—˜์  ๋ฐ ์ˆ˜์น˜ํ•ด์„์  ์œ ๋™๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„๊ณตํ•™๋ถ€, 2023. 2. ํ™ฉ์›ํƒœ.A selective catalytic reduction (SCR) reactor is commonly used to remove nitrogen oxides (NOx) from coal-fired boilers. Uniformity of the flow passing through the catalyst layer is important for increasing denitrification (de-NOx) efficiency. In order to examine flow uniformity, this study conducted an experimental and numerical analysis of the complex internal flow within a realistic SCR model. Magnetic resonance velocimetry (MRV) was utilized to obtain non-invasive measurements of three-dimensional three-component average velocity and validate Reynolds-averaged Navier-Stokes (RANS) numerical simulations. The computational results showed similar overall flow structure compared with the MRV results. Parameters representing flow quality such as relative standard deviation (RSD) and recirculation zone strength (RZS) were calculated by integrating the flow field. These parameters have the largest value after the inlet grid area and decrease towards the catalyst reactor, and are not significantly affected by Reynolds number upstream of the catalyst layer. The recirculation zone size was analyzed using spanwise uniformity and skewness indicators. As the recirculation zone induces biased flow, the non-reacted NOx concentration was more prominent in the outlet zone opposite of the recirculating area in the corresponding actual on-site SCR reactor. Based on this finding, a meaningful correlation between flow maldistribution and de-NOx reaction could be deduced.์„ ํƒ์  ์ด‰๋งค ํ™˜์› ๋ฐ˜์‘ ์žฅ์น˜๋Š” ์„ํƒ„ ํ™”๋ ฅ ๋ฐœ์ „์†Œ์—์„œ ์งˆ์†Œ์‚ฐํ™”๋ฌผ์„ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ์ด๋•Œ ์ด‰๋งค์ธต์„ ํ†ต๊ณผํ•˜๋Š” ์œ ๋™์˜ ๊ท ์ผ์„ฑ์€ ํƒˆ์งˆํ™” ํšจ์œจ์„ ๋†’์ด๋Š” ๋ฐ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ๋™์˜ ๊ท ์ผ์„ฑ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ˜„์‹ค์ ์ธ ์„ ํƒ์  ์ด‰๋งค ํ™˜์› ์žฅ์น˜ ๋ชจํ˜• ๋‚ด์—์„œ ๋ณต์žกํ•œ ๋‚ด๋ถ€ ์œ ๋™์— ๋Œ€ํ•œ ์‹คํ—˜์ ์ด๊ณ  ์ˆ˜์น˜์ ์ธ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์ž๊ธฐ ๊ณต๋ช… ์œ ์†๊ณ„๋Š” ๋น„์นจ์Šต์ ์œผ๋กœ 3์ฐจ์› 3์„ฑ๋ถ„ ํ‰๊ท  ์†๋„๋ฅผ ์–ป๊ณ  ๋ ˆ์ด๋†€์ฆˆ ํ‰๊ท  ๋‚˜๋น„์—-์Šคํ† ํฌ์Šค ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ฒ€์ฆํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ˆ˜์น˜ํ•ด์„ ๊ฒฐ๊ณผ๋Š” ์ž๊ธฐ ๊ณต๋ช… ์œ ์†๊ณ„์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ ์œ ์‚ฌํ•œ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ƒ๋Œ€ ํ‘œ์ค€ ํŽธ์ฐจ์™€ ์žฌ์ˆœํ™˜ ์˜์—ญ ๊ฐ•๋„ ๋“ฑ์˜ ์œ ๋™ ๋ถ„์„ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ํ†ตํ•ด ์†๋„ ์„ฑ๋ถ„์„ ์ ๋ถ„ํ•˜์—ฌ ์œ ๋™ ๋ถ„์„์„ ํ–ˆ๋‹ค. ์ด ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์€ ์Šคํฌ๋ฆฐํŒ ์งํ›„ ๊ฐ€์žฅ ํฐ ๊ฐ’์„ ๋„๋‹ค๊ฐ€ ์ด‰๋งค ๋ฐ˜์‘๊ธฐ ์ชฝ์œผ๋กœ ๊ฐˆ์ˆ˜๋ก ๊ฐ์†Œํ•˜๋ฉฐ, ์ด‰๋งค ๋ฐ˜์‘๊ธฐ ์ƒ๋ฅ˜์˜ ์œ ๋™์€ ๋ ˆ์ด๋†€์ฆˆ ์ˆ˜์— ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๋Š”๋‹ค. ์žฌ์ˆœํ™˜ ์˜์—ญ์˜ ํฌ๊ธฐ๋Š” ์ธก๋ฉด ๋ฐฉํ–ฅ ์œ ๋™ ๊ท ์ผ์„ฑ ๋ฐ ๋ถˆ๊ท ์ผ์„ฑ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ํ˜„์žฅ์—์„œ ๊ณ„์ธกํ•œ ๋ฏธ๋ฐ˜์‘ ์งˆ์†Œ์‚ฐํ™”๋ฌผ ๋†๋„ ๋ฐ์ดํ„ฐ์™€ ์‹ค์ œ ํฌ๊ธฐ์—์„œ์˜ ์ „์‚ฐ์ˆ˜์น˜ํ•ด์„ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ต๋ฅผ ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์žฌ์ˆœํ™˜ ์˜์—ญ์ด ํŽธํ–ฅ๋œ ํ๋ฆ„์„ ์œ ๋„ํ•จ์— ๋”ฐ๋ผ, ํ•ด๋‹น ์„ ํƒ์  ์ด‰๋งค ํ™˜์› ๋ฐ˜์‘ ์žฅ์น˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์žฌ์ˆœํ™˜ ์˜์—ญ์˜ ๋ฐ˜๋Œ€์ชฝ ์ถœ๊ตฌ ์˜์—ญ์—์„œ ๋ฏธ๋ฐ˜์‘ ์งˆ์†Œ์‚ฐํ™”๋ฌผ ๋†๋„๊ฐ€ ๋” ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ๋ฐœ๊ฒฌ์„ ๋ฐ”ํƒ•์œผ๋กœ ์œ ๋™ ๋ถˆ๊ท ์ผ ์„ฑ์ด ํƒˆ์งˆ ๋ฐ˜์‘ ์‚ฌ์ด์—์„œ ์œ ์˜๋ฏธํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1 Study background 1 1.2 Purpose of research 3 Chapter 2. Methodology 5 2.1 Experimental setup 5 2.2 Numerical method 7 Chapter 3. Results and Discussion 15 3.1 Flow evaluation indices 15 3.2 SCR inlet flow 16 3.3 Flow non-uniformity 17 3.4 Recirculation zone analysis 22 3.5 Relationship between non-uniformity and de-NOx efficiency 24 Chapter 4. Conclusion 38 Acknowledgement 40 Bibliography 41 ์ดˆ ๋ก 46์„
    corecore