2 research outputs found

    Application of adaptive wavelet networks for vibration control of base isolated structures

    Get PDF
    Accepted version of an article from the journal: International Journal of Wavelets, Multiresolution & Information Processing. Official version article published as International Journal of Wavelets, Multiresolution & Information Processing, 2010 8(5), 773-791. doi: 10.1142/s0219691310003778 © World Scientific Publishing Company http:// http://www.worldscinet.com/ijwmip/This paper presents an application of wavelet networks (WNs) in identification and control design for a class of structures equipped with a type of semiactive actuators, which are called magnetorheological (MR) dampers. The nonlinear model is identified based on a WN framework. Based on the technique of feedback linearization, supervisory control and H∞ control, an adaptive control strategy is developed to compensate for the nonlinearity in the structure so as to enhance the response of the system to earthquake type inputs. Furthermore, the parameter adaptive laws of the WN are developed. In particular, it is shown that the proposed control strategy offers a reasonably effective approach to semiactive control of structures. The applicability of the proposed method is illustrated on a building structure by computer simulation

    APPLICATION OF ADAPTIVE WAVELET NETWORKS FOR VIBRATION CONTROL OF BASE ISOLATED STRUCTURES

    No full text
    Accepted version of an article from the journal: International Journal of Wavelets, Multiresolution & Information Processing. Official version article published as International Journal of Wavelets, Multiresolution & Information Processing, 2010 8(5), 773-791. doi: 10.1142/s0219691310003778 © World Scientific Publishing Company http:// http://www.worldscinet.com/ijwmip/This paper presents an application of wavelet networks (WNs) in identification and control design for a class of structures equipped with a type of semiactive actuators, which are called magnetorheological (MR) dampers. The nonlinear model is identified based on a WN framework. Based on the technique of feedback linearization, supervisory control and H∞ control, an adaptive control strategy is developed to compensate for the nonlinearity in the structure so as to enhance the response of the system to earthquake type inputs. Furthermore, the parameter adaptive laws of the WN are developed. In particular, it is shown that the proposed control strategy offers a reasonably effective approach to semiactive control of structures. The applicability of the proposed method is illustrated on a building structure by computer simulation
    corecore