9,563 research outputs found

    On the Modular Specification of NFPs: A Case Study

    Get PDF
    The modular specification of non-functional properties of systems is a current challenge of Software Engineering, for which no clear solution exists. However, in the case of Domain-Specific Languages some successful proposals are starting to emerge, combining model-driven techniques with aspect-weaving mechanisms. In this paper we show one of these approaches in practice, and present the implementation we have developed to fully support it. We apply our approach for the specification and monitoring of non-functional properties using observers to a case study, illustrating how generic observers defining non-functional properties can be defined in an independent manner. Then, correspondences between these observers and the domain-specific model of the system can be established, and then weaved into a unified system specification using ATL model transformation. Such a unified specification can also be analyzed in a natural way to obtain the required non-functional properties of the system.This work is partially funded by Research Projects TIN2011-23795 and TIN2011-15497-E

    Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    Get PDF
    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of object-oriented Petri Net implementation and real-time visualisation are presented

    Engineering scalable modelling Languages

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura: 08-11-2019Esta tesis tiene embargado el acceso al texto completo hasta el 08-05-2021Model-Driven Engineering (MDE) aims at reducing the cost of system development by raising the level of abstraction at which developers work. MDE-based solutions frequently involve the creation of Domain-Specific Modelling Languages (DSMLs). WhilethedefinitionofDSMLsandtheir(sometimesgraphical)supportingenvironments are recurring activities in MDE, they are mostly developed ad-hoc from scratch. The construction of these environments requires high expertise by developers, which currently need to spend large efforts for their construction. This thesis focusses on the development of scalable modelling environments for DSMLs based on patterns. For this purpose, we propose a catalogue of modularity patterns that can be used to extend a modelling language with services related to modularization and scalability. More specifically, these patterns allows defining model fragmentation strategies, scoping and visibility rules, model indexing services, and scoped constraints. Once the patterns have been applied to the meta-model of a modelling language, we synthesize a customized modelling environment enriched with the defined services, which become applicable to both existing monolithic legacy models and new models. A second contribution of this thesis is a set of concepts and technologies to facilitate the creation of graphical editors. For this purpose, we define heuristics which identify structures in the DSML abstract syntax, and automatically assign their diagram representation. Using this approach, developers can create a graphical representation by default from a meta-model, which later can be customised. These contributions have been implemented in two Eclipse plug-ins called EMFSplitter and EMF-Stencil. On one hand, EMF-Splitter implements the catalogue of modularity patterns and, on the other hand, EMF-Stencil supports the heuristics and the generation of a graphical modelling environment. Both tools were evaluated in different case studies to prove their versatility, efficiency, and capabilitieEl Desarrollo de Software Dirigido por Modelos (MDE, por sus siglas en inglés) tiene como objetivo reducir los costes en el desarrollo de aplicaciones, elevando el nivel de abstracciónconelqueactualmentetrabajanlosdesarrolladores. Lassolucionesbasadas en MDE frecuentemente involucran la creación de Lenguajes de Modelado de Dominio Específico (DSML, por sus siglas en inglés). Aunque la definición de los DSMLs y sus entornos gráficos de modelado son actividades recurrentes en MDE, actualmente en la mayoría de los casos se desarrollan ad-hoc desde cero. La construcción de estos entornos requiere una alta experiencia por parte de los desarrolladores, que deben realizar un gran esfuerzo para construirlos. Esta tesis se centra en el desarrollo de entornos de modelado escalables para DSML basados en patrones. Para ello, se propone un catálogo de patrones de modularidad que se pueden utilizar para extender un lenguaje de modelado con servicios relacionados con la modularización y la escalabilidad. Específicamente, los patrones permiten definir estrategias de fragmentación de modelos, reglas de alcance y visibilidad, servicios de indexación de modelos y restricciones de alcance. Una vez que los patrones se han aplicado al meta-modelo de un lenguaje de modelado, se puede generar automáticamente un entorno de modelado personalizado enriquecido con los servicios definidos, que se vuelven aplicables tanto a los modelos monolíticos existentes, como a los nuevos modelos. Una segunda contribución de esta tesis es la propuesta de conceptos y tecnologías para facilitar la creación de editores gráficos. Para ello, definimos heurísticas que identifican estructuras en la sintaxis abstracta de los DSMLs y asignan automáticamente su representación en el diagrama. Usando este enfoque, los desarrolladores pueden crear una representación gráfica por defecto a partir de un meta-modelo. Estas contribuciones se implementaron en dos plug-ins de Eclipse llamados EMFSplitter y EMF-Stencil. Por un lado, EMF-Splitter implementa el catálogo de patrones y, por otro lado, EMF-Stencil implementa las heurísticas y la generación de un entorno de modelado gráfico. Ambas herramientas se han evaluado con diferentes casos de estudio para demostrar su versatilidad, eficiencia y capacidade

    An architecture and methodology for the design and development of Technical Information Systems

    Get PDF
    In order to meet demands in the context of Technical Information Systems (TIS) pertaining to reliability, extensibility, maintainability, etc., we have developed an architectural framework with accompanying methodological guidelines for designing such systems. With the framework, we aim at complex multiapplication information systems using a repository to share data among applications. The framework proposes to keep a strict separation between Man-Machine-Interface and Model data, and provides design and implementation support to do this effectively.\ud The framework and methodological guidelines have been developed in the context of the ESPRIT project IMPRESS. The project also provided for ldquotesting groundsrdquo in the form of a TIS for the Spanish Electricity company Iberdrola.\ud This work has been conducted within the ESPRIT project IMPRESS (Integrated, Multi-Paradigm, Reliable and Extensible Storage System), ESPRIT No. 635

    The SEC-system : reuse support for scheduling system development

    Get PDF
    Recently, in a joint cooperation of Stichting VNA, SAL Apotheken, the Faculty of Management and Organization, and the University Centre for Pharmacy, University of Groningen in the Netherlands, a Ph.D-study started regarding Apot(he)ek, Organization and Management (APOM). The APOM-project deals with the structuring and steering of pharmacy organization. The manageability of the internal pharmacy organization, and the manageability of the direct environment of pharmacy organization is the subject matter. The theoretical background of the APOM-project is described. A literature study was made to find mixes of objectives. Three mixes of objectives in pharmacy organization are postulated; the product mix, the process mix, and the customer mix. The typology will be used as a basic starting point for the empirical study in the next phase of the APOM-project.

    Modelling and simulation framework for reactive transport of organic contaminants in bed-sediments using a pure java object - oriented paradigm

    Get PDF
    Numerical modelling and simulation of organic contaminant reactive transport in the environment is being increasingly relied upon for a wide range of tasks associated with risk-based decision-making, such as prediction of contaminant profiles, optimisation of remediation methods, and monitoring of changes resulting from an implemented remediation scheme. The lack of integration of multiple mechanistic models to a single modelling framework, however, has prevented the field of reactive transport modelling in bed-sediments from developing a cohesive understanding of contaminant fate and behaviour in the aquatic sediment environment. This paper will investigate the problems involved in the model integration process, discuss modelling and software development approaches, and present preliminary results from use of CORETRANS, a predictive modelling framework that simulates 1-dimensional organic contaminant reaction and transport in bed-sediments

    TinkerCell: Modular CAD Tool for Synthetic Biology

    Get PDF
    Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. An application named TinkerCell has been created in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various C and Python programs that are hosted by TinkerCell via an extensive C and Python API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. Because TinkerCell associates parameters and equations in a model with their respective part, parts can be loaded from databases along with their parameters and rate equations. The modular network design can be used to exchange modules as well as test the concept of modularity in biological systems. The flexible modeling framework along with the C and Python API allows TinkerCell to serve as a host to numerous third-party algorithms. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at www.tinkercell.com.Comment: 23 pages, 20 figure

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term
    corecore