1,626,674 research outputs found

    Applicability constraints of the Equivalence Theorem

    Get PDF
    In this work we study the applicability of the Equivalence Theorem, either for unitary models or within an effective lagrangian approach. There are two types of limitations: the existence of a validity energy window and the use of the lowest order in the electroweak constants. For the first kind, we consider some methods, based on dispersion theory or the large NN limit, that allow us to extend the applicability. For the second, we have obtained numerical estimates of the effect of neglecting higher orders in the perturbative expansion.Comment: Final version to appear in Phys. Rev. D. Power counting and energy range estimates have been refined, improved referencing. 4 postscript figures, uses revtex. FT-UCM 1/9

    Measurement and evaluation of the applicability of reflective displays for direct view applications

    Get PDF
    A measurement set-up is presented to analyse the applicability of reflective displays for direct view applications. Essential for this set-up is to simulate the different types of illumination caused by environmental light. As an example the applicability of a reflective PNLC display is evaluated

    On the Domain of Applicability of General Relativity

    Get PDF
    We consider the domain of applicability of general relativity (GR), as a classical theory of gravity, by considering its applications to a variety of settings of physical interest as well as its relationship with real observations. We argue that, as it stands, GR is deficient whether it is treated as a microscopic or a macroscopic theory of gravity. We briefly discuss some recent attempts at removing this shortcoming through the construction of a macroscopic theory of gravity. We point out that such macroscopic extensions of GR are likely to be non-unique and involve non-Riemannian geometrical frameworks.Comment: 19 pages, LaTeX, submitted to Found. Phy

    The applicability of the wind compression model

    Full text link
    Compression of the stellar winds from rapidly rotating hot stars is described by the wind compression model. However, it was also shown that rapid rotation leads to rotational distortion of the stellar surface, resulting in the appearance of non-radial forces acting against the wind compression. In this note we justify the wind compression model for moderately rotating white dwarfs and slowly rotating giants. The former could be conducive to understanding density/ionization structure of the mass outflow from symbiotic stars and novae, while the latter can represent an effective mass-transfer mode in the wide interacting binaries.Comment: 3 pages, A&
    corecore