16,717 research outputs found

    Appearance-based SLAM in a network space

    Get PDF
    The task of Simultaneous Localization and Mapping (SLAM) is regularly performed in network spaces consisting of a set of corridors connecting locations in the space. Empirical research has demonstrated that such spaces generally exhibit common structural properties relating to aspects such as corridor length. Consequently there exists potential to improve performance through the placement of priors over these properties. In this work we propose an appearance-based SLAM method which explicitly models the space as a network and in turn uses this model as a platform to place priors over its structure. Relative to existing works, which implicitly assume a network space and place priors over its structure, this approach allows a more formal placement of priors. In order to achieve robustness, the proposed method is implemented within a multi-hypothesis tracking framework. Results achieved on two publicly available datasets demonstrate the proposed method outperforms a current state-of-the-art appearance-based SLAM method

    Semi-supervised Vector-Quantization in Visual SLAM using HGCN

    Full text link
    In this paper, two semi-supervised appearance based loop closure detection technique, HGCN-FABMAP and HGCN-BoW are introduced. Furthermore an extension to the current state of the art localization SLAM algorithm, ORB-SLAM, is presented. The proposed HGCN-FABMAP method is implemented in an off-line manner incorporating Bayesian probabilistic schema for loop detection decision making. Specifically, we let a Hyperbolic Graph Convolutional Neural Network (HGCN) to operate over the SURF features graph space, and perform vector quantization part of the SLAM procedure. This part previously was performed in an unsupervised manner using algorithms like HKmeans, kmeans++,..etc. The main Advantage of using HGCN, is that it scales linearly in number of graph edges. Experimental results shows that HGCN-FABMAP algorithm needs far more cluster centroids than HGCN-ORB, otherwise it fails to detect loop closures. Therefore we consider HGCN-ORB to be more efficient in terms of memory consumption, also we conclude the superiority of HGCN-BoW and HGCN-FABMAP with respect to other algorithms

    Training a Convolutional Neural Network for Appearance-Invariant Place Recognition

    Full text link
    Place recognition is one of the most challenging problems in computer vision, and has become a key part in mobile robotics and autonomous driving applications for performing loop closure in visual SLAM systems. Moreover, the difficulty of recognizing a revisited location increases with appearance changes caused, for instance, by weather or illumination variations, which hinders the long-term application of such algorithms in real environments. In this paper we present a convolutional neural network (CNN), trained for the first time with the purpose of recognizing revisited locations under severe appearance changes, which maps images to a low dimensional space where Euclidean distances represent place dissimilarity. In order for the network to learn the desired invariances, we train it with triplets of images selected from datasets which present a challenging variability in visual appearance. The triplets are selected in such way that two samples are from the same location and the third one is taken from a different place. We validate our system through extensive experimentation, where we demonstrate better performance than state-of-art algorithms in a number of popular datasets

    LookUP: Vision-Only Real-Time Precise Underground Localisation for Autonomous Mining Vehicles

    Full text link
    A key capability for autonomous underground mining vehicles is real-time accurate localisation. While significant progress has been made, currently deployed systems have several limitations ranging from dependence on costly additional infrastructure to failure of both visual and range sensor-based techniques in highly aliased or visually challenging environments. In our previous work, we presented a lightweight coarse vision-based localisation system that could map and then localise to within a few metres in an underground mining environment. However, this level of precision is insufficient for providing a cheaper, more reliable vision-based automation alternative to current range sensor-based systems. Here we present a new precision localisation system dubbed "LookUP", which learns a neural-network-based pixel sampling strategy for estimating homographies based on ceiling-facing cameras without requiring any manual labelling. This new system runs in real time on limited computation resource and is demonstrated on two different underground mine sites, achieving real time performance at ~5 frames per second and a much improved average localisation error of ~1.2 metre.Comment: 7 pages, 7 figures, accepted for IEEE ICRA 201
    • …
    corecore