502 research outputs found
Task Scheduling on the Cloud with Hard Constraints
Scheduling Bag-of-Tasks (BoT) applications on the cloud can be more
challenging than grid and cluster environ- ments. This is because a user may
have a budgetary constraint or a deadline for executing the BoT application in
order to keep the overall execution costs low. The research in this paper is
motivated to investigate task scheduling on the cloud, given two hard
constraints based on a user-defined budget and a deadline. A heuristic
algorithm is proposed and implemented to satisfy the hard constraints for
executing the BoT application in a cost effective manner. The proposed
algorithm is evaluated using four scenarios that are based on the trade-off
between performance and the cost of using different cloud resource types. The
experimental evaluation confirms the feasibility of the algorithm in satisfying
the constraints. The key observation is that multiple resource types can be a
better alternative to using a single type of resource.Comment: Visionary Track of the IEEE 11th World Congress on Services (IEEE
SERVICES 2015
Autotuning Apache TVM-based Scientific Applications Using Bayesian Optimization
Apache TVM (Tensor Virtual Machine), an open source machine learning compiler
framework designed to optimize computations across various hardware platforms,
provides an opportunity to improve the performance of dense matrix
factorizations such as LU (Lower Upper) decomposition and Cholesky
decomposition on GPUs and AI (Artificial Intelligence) accelerators. In this
paper, we propose a new TVM autotuning framework using Bayesian Optimization
and use the TVM tensor expression language to implement linear algebra kernels
such as LU, Cholesky, and 3mm. We use these scientific computation kernels to
evaluate the effectiveness of our methods on a GPU cluster, called Swing, at
Argonne National Laboratory. We compare the proposed autotuning framework with
the TVM autotuning framework AutoTVM with four tuners and find that our
framework outperforms AutoTVM in most cases
Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM
We explore the utilization of the Apache TVM open source framework to
automatically generate a family of algorithms that follow the approach taken by
popular linear algebra libraries, such as GotoBLAS2, BLIS and OpenBLAS, in
order to obtain high-performance blocked formulations of the general matrix
multiplication (GEMM). % In addition, we fully automatize the generation
process, by also leveraging the Apache TVM framework to derive a complete
variety of the processor-specific micro-kernels for GEMM. This is in contrast
with the convention in high performance libraries, which hand-encode a single
micro-kernel per architecture using Assembly code. % In global, the combination
of our TVM-generated blocked algorithms and micro-kernels for GEMM 1)~improves
portability, maintainability and, globally, streamlines the software life
cycle; 2)~provides high flexibility to easily tailor and optimize the solution
to different data types, processor architectures, and matrix operand shapes,
yielding performance on a par (or even superior for specific matrix shapes)
with that of hand-tuned libraries; and 3)~features a small memory footprint.Comment: 35 pages, 22 figures. Submitted to ACM TOM
On the feasibility of optimizing ML-based intrusion detection for CAN on real-world hardware platforms
LAUREA MAGISTRALEIn recent years, the automotive industry has seen a surge, thanks to the growing use of
Vehicle-to-Vehicle (V2V) technology and the implementation of the Vehicle-to-Infrastructure
(V2I) communication model, information systems that make possible the data exchange
between vehicles and road infrastructure. Nevertheless, the creation of new opportunities and the diffusion of these technologies lead to a growth of the number of attackable
surfaces and, consequently, the potential threats. In fact, the communication between
the Electronic Control Unit (ECU) exploits a network protocol highly reliable and economical (the Control Area Network (CAN)) that results vulnerable in front of possible
attacks, because of the total absence of appropriate protective mechanisms. On top of
this, it seems clear that it is necessary to strengthen vehicles’ cyber-security systems, to
detect intrusions. One of the most common security solutions is the usage of the so-called
Intrusion Detection System (IDS) that must be able to detect the attacks in real-time
while keeping a moderate consumption of energy, low costs and employing hardware with
limited computational capabilities. In this sense, this work aims to evaluate the capabilities of different optimization techniques on various hardware platforms to provide their
strengths and weaknesses in the detection time speedup of CAN IDSs. This thesis target
CANnolo, one of the most complete state-of-the-art IDS. In the automotive context, to
the best of my knowledge, I am the first to make such an evaluation, comprising different grades hardware platforms (CPUs, GPUs and FPGAs) and optimization techniques such
as quantization (with the use of PyTorch library and Vitis Ai) and graph-level (with the
use of Apache TVM).Negli ultimi anni, nel settore automotive c’è stata una svolta in termini di connettività,
grazie al crescente impiego della tecnologia V2V (Vehicle-To-Vehicle) ed all’implementazione
del modello comunicativo V2I (Vechicle-To-Infrastracture), sistemi informatici che permettono lo scambio di dati tra veicoli ed infrastrutture stradali. Al momento, però, non si
può ancora parlare concretamente di progresso perché, oltre alla creazione di nuove opportunità, la diffusione di queste tecnologie ha aumentato anche le superfici attaccabili
e, conseguentemente, le potenziali minacce. Attualmente, infatti, la comunicazione tra le
varie unità di controllo elettronico (ECU) avviene tramite Control Area Network (CAN),
un protocollo di rete altamente affidabile ed economico che risulta, tuttavia, evidentemente
vulnerabile di fronte a possibili attacchi, per via della totale mancanza di meccanismi di
difesa adeguati. A fronte di ciò, appare evidente che sia necessario intervenire per rafforzare il sistema di sicurezza informatica delle autovetture, in modo da evitare intrusioni.
L’implementazione della sicurezza è legata all’utilizzo dei cosiddetti IDS (acronimo che sta
per sistemi di rilevamento delle intrusioni) che devono tassativamente rilevare gli attacchi
in tempo reale, pur mantenendo un consumo di energia contenuto, costi modesti ed utilizzando hardware con capacità molto limitate. Il mio lavoro punta a valutare le capacità di
differenti tecniche di ottimizzazione su diverse piattaforme hardware in modo da rilevare
i punti di forza e di debolezza nel migliorare la velocità della detection di CANnolo, uno
degli IDS più completi nell’attuale stato dell’arte. Nel contesto automotive, stando alle
informazioni in mio possesso, sono il primo ad effettuare una valutazione di questo tipo,
andando a comprendere differenti tipologie di piattaforme hardware (CPUs, GPUs e FPGAs) e tecniche di ottimizzazione: come quantizzazione (attraverso Pytorch quantization
library e Vitis Ai) e graph-level (attraverso Apache TVM)
- …
