2,010 research outputs found

    Unleashing the Power of Hashtags in Tweet Analytics with Distributed Framework on Apache Storm

    Full text link
    Twitter is a popular social network platform where users can interact and post texts of up to 280 characters called tweets. Hashtags, hyperlinked words in tweets, have increasingly become crucial for tweet retrieval and search. Using hashtags for tweet topic classification is a challenging problem because of context dependent among words, slangs, abbreviation and emoticons in a short tweet along with evolving use of hashtags. Since Twitter generates millions of tweets daily, tweet analytics is a fundamental problem of Big data stream that often requires a real-time Distributed processing. This paper proposes a distributed online approach to tweet topic classification with hashtags. Being implemented on Apache Storm, a distributed real time framework, our approach incrementally identifies and updates a set of strong predictors in the Na\"ive Bayes model for classifying each incoming tweet instance. Preliminary experiments show promising results with up to 97% accuracy and 37% increase in throughput on eight processors.Comment: IEEE International Conference on Big Data 201

    On the usage of the probability integral transform to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems

    Full text link
    We present a new distributed fuzzy partitioning method to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems. The proposed algorithm builds a fixed number of fuzzy sets for all variables and adjusts their shape and position to the real distribution of training data. A two-step process is applied : 1) transformation of the original distribution into a standard uniform distribution by means of the probability integral transform. Since the original distribution is generally unknown, the cumulative distribution function is approximated by computing the q-quantiles of the training set; 2) construction of a Ruspini strong fuzzy partition in the transformed attribute space using a fixed number of equally distributed triangular membership functions. Despite the aforementioned transformation, the definition of every fuzzy set in the original space can be recovered by applying the inverse cumulative distribution function (also known as quantile function). The experimental results reveal that the proposed methodology allows the state-of-the-art multi-way fuzzy decision tree (FMDT) induction algorithm to maintain classification accuracy with up to 6 million fewer leaves.Comment: Appeared in 2018 IEEE International Congress on Big Data (BigData Congress). arXiv admin note: text overlap with arXiv:1902.0935

    PlinyCompute: A Platform for High-Performance, Distributed, Data-Intensive Tool Development

    Full text link
    This paper describes PlinyCompute, a system for development of high-performance, data-intensive, distributed computing tools and libraries. In the large, PlinyCompute presents the programmer with a very high-level, declarative interface, relying on automatic, relational-database style optimization to figure out how to stage distributed computations. However, in the small, PlinyCompute presents the capable systems programmer with a persistent object data model and API (the "PC object model") and associated memory management system that has been designed from the ground-up for high performance, distributed, data-intensive computing. This contrasts with most other Big Data systems, which are constructed on top of the Java Virtual Machine (JVM), and hence must at least partially cede performance-critical concerns such as memory management (including layout and de/allocation) and virtual method/function dispatch to the JVM. This hybrid approach---declarative in the large, trusting the programmer's ability to utilize PC object model efficiently in the small---results in a system that is ideal for the development of reusable, data-intensive tools and libraries. Through extensive benchmarking, we show that implementing complex objects manipulation and non-trivial, library-style computations on top of PlinyCompute can result in a speedup of 2x to more than 50x or more compared to equivalent implementations on Spark.Comment: 48 pages, including references and Appendi
    • …
    corecore