95 research outputs found

    Tight upper bound on the maximum anti-forcing numbers of graphs

    Full text link
    Let GG be a simple graph with a perfect matching. Deng and Zhang showed that the maximum anti-forcing number of GG is no more than the cyclomatic number. In this paper, we get a novel upper bound on the maximum anti-forcing number of GG and investigate the extremal graphs. If GG has a perfect matching MM whose anti-forcing number attains this upper bound, then we say GG is an extremal graph and MM is a nice perfect matching. We obtain an equivalent condition for the nice perfect matchings of GG and establish a one-to-one correspondence between the nice perfect matchings and the edge-involutions of GG, which are the automorphisms α\alpha of order two such that vv and α(v)\alpha(v) are adjacent for every vertex vv. We demonstrate that all extremal graphs can be constructed from K2K_2 by implementing two expansion operations, and GG is extremal if and only if one factor in a Cartesian decomposition of GG is extremal. As examples, we have that all perfect matchings of the complete graph K2nK_{2n} and the complete bipartite graph Kn,nK_{n, n} are nice. Also we show that the hypercube QnQ_n, the folded hypercube FQnFQ_n (n≥4n\geq4) and the enhanced hypercube Qn,kQ_{n, k} (0≤k≤n−40\leq k\leq n-4) have exactly nn, n+1n+1 and n+1n+1 nice perfect matchings respectively.Comment: 15 pages, 7 figure

    Relations between global forcing number and maximum anti-forcing number of a graph

    Full text link
    The global forcing number of a graph G is the minimal cardinality of an edge subset discriminating all perfect matchings of G, denoted by gf(G). For any perfect matching M of G, the minimal cardinality of an edge subset S in E(G)-M such that G-S has a unique perfect matching is called the anti-forcing number of M,denoted by af(G, M). The maximum anti-forcing number of G among all perfect matchings is denoted by Af(G). It is known that the maximum anti-forcing number of a hexagonal system equals the famous Fries number. We are interested in some comparisons between the global forcing number and the maximum anti-forcing number of a graph. For a bipartite graph G, we show that gf(G)is larger than or equal to Af(G). Next we mainly extend such result to non-bipartite graphs, which is the set of all graphs with a perfect matching which contain no two disjoint odd cycles such that their deletion results in a subgraph with a perfect matching. For any such graph G, we also have gf(G) is larger than or equal to Af(G) by revealing further property of non-bipartite graphs with a unique perfect matching. As a consequence, this relation also holds for the graphs whose perfect matching polytopes consist of non-negative 1-regular vectors. In particular, for a brick G, de Carvalho, Lucchesi and Murty [4] showed that G satisfying the above condition if and only if G is solid, and if and only if its perfect matching polytope consists of non-negative 1-regular vectors. Finally, we obtain tight upper and lower bounds on gf(G)-Af(G). For a connected bipartite graph G with 2n vertices, we have that 0 \leq gf(G)-Af(G) \leq 1/2 (n-1)(n-2); For non-bipartite case, -1/2 (n^2-n-2) \leq gf(G)-Af(G) \leq (n-1)(n-2).Comment: 19 pages, 11 figure

    Fractional forcing number of graphs

    Full text link
    The notion of forcing sets for perfect matchings was introduced by Harary, Klein, and \v{Z}ivkovi\'{c}. The application of this problem in chemistry, as well as its interesting theoretical aspects, made this subject very active. In this work, we introduce the notion of the forcing function of fractional perfect matchings which is continuous analogous to forcing sets defined over the perfect matching polytope of graphs. We show that our defined object is a continuous and concave function extension of the integral forcing set. Then, we use our results about this extension to conclude new bounds and results about the integral case of forcing sets for the family of edge and vertex-transitive graphs and in particular, hypercube graphs

    Maximizing the minimum and maximum forcing numbers of perfect matchings of graphs

    Full text link
    Let GG be a simple graph with 2n2n vertices and a perfect matching. The forcing number f(G,M)f(G,M) of a perfect matching MM of GG is the smallest cardinality of a subset of MM that is contained in no other perfect matching of GG. Among all perfect matchings MM of GG, the minimum and maximum values of f(G,M)f(G,M) are called the minimum and maximum forcing numbers of GG, denoted by f(G)f(G) and F(G)F(G), respectively. Then f(G)≤F(G)≤n−1f(G)\leq F(G)\leq n-1. Che and Chen (2011) proposed an open problem: how to characterize the graphs GG with f(G)=n−1f(G)=n-1. Later they showed that for bipartite graphs GG, f(G)=n−1f(G)=n-1 if and only if GG is complete bipartite graph Kn,nK_{n,n}. In this paper, we solve the problem for general graphs and obtain that f(G)=n−1f(G)=n-1 if and only if GG is a complete multipartite graph or Kn,n+K^+_{n,n} (Kn,nK_{n,n} with arbitrary additional edges in the same partite set). For a larger class of graphs GG with F(G)=n−1F(G)=n-1 we show that GG is nn-connected and a brick (3-connected and bicritical graph) except for Kn,n+K^+_{n,n}. In particular, we prove that the forcing spectrum of each such graph GG is continued by matching 2-switches and the minimum forcing numbers of all such graphs GG form an integer interval from ⌊n2⌋\lfloor\frac{n}{2}\rfloor to n−1n-1

    A Combinatorial Approach to Nonlocality and Contextuality

    Full text link
    So far, most of the literature on (quantum) contextuality and the Kochen-Specker theorem seems either to concern particular examples of contextuality, or be considered as quantum logic. Here, we develop a general formalism for contextuality scenarios based on the combinatorics of hypergraphs which significantly refines a similar recent approach by Cabello, Severini and Winter (CSW). In contrast to CSW, we explicitly include the normalization of probabilities, which gives us a much finer control over the various sets of probabilistic models like classical, quantum and generalized probabilistic. In particular, our framework specializes to (quantum) nonlocality in the case of Bell scenarios, which arise very naturally from a certain product of contextuality scenarios due to Foulis and Randall. In the spirit of CSW, we find close relationships to several graph invariants. The recently proposed Local Orthogonality principle turns out to be a special case of a general principle for contextuality scenarios related to the Shannon capacity of graphs. Our results imply that it is strictly dominated by a low level of the Navascu\'es-Pironio-Ac\'in hierarchy of semidefinite programs, which we also apply to contextuality scenarios. We derive a wealth of results in our framework, many of these relating to quantum and supraquantum contextuality and nonlocality, and state numerous open problems. For example, we show that the set of quantum models on a contextuality scenario can in general not be characterized in terms of a graph invariant. In terms of graph theory, our main result is this: there exist two graphs G1G_1 and G2G_2 with the properties \begin{align*} \alpha(G_1) &= \Theta(G_1), & \alpha(G_2) &= \vartheta(G_2), \\[6pt] \Theta(G_1\boxtimes G_2) & > \Theta(G_1)\cdot \Theta(G_2),& \Theta(G_1 + G_2) & > \Theta(G_1) + \Theta(G_2). \end{align*}Comment: minor revision, same results as in v2, to appear in Comm. Math. Phy
    • …
    corecore