336 research outputs found

    An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics

    Get PDF
    Numerical simulation of bubble dynamics and cavitation is challenging; even the seemingly simple problem of a collapsing spherical bubble is difficult to compute accurately with a general, three-dimensional, compressible, multicomponent flow solver. Difficulties arise due to both the physical model and the numerical method chosen for its solution. We consider the 5-equation model of Allaire et al. [1], the 5-equation model of Kapila et al. [2], and the 6-equation model of Saurel et al. [3] as candidate approaches for spherical bubble dynamics, and both MUSCL and WENO interface-capturing methods are implemented and compared. We demonstrate the inadequacy of the traditional 5-equation model of Allaire et al. [1] for spherical bubble collapse problems and explain the corresponding advantages of the augmented model of Kapila et al. [2] for representing this phenomenon. Quantitative comparisons between the augmented 5-equation and 6-equation models for three-dimensional bubble collapse problems demonstrate the versatility of pressure-disequilibrium models. Lastly, the performance of pressure disequilibrium model for representing a three-dimensional spherical bubble collapse for different bubble interior/exterior pressure ratios is evaluated for different numerical methods. Pathologies associated with each factor and their origins are identified and discussed

    MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver

    Get PDF
    MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full capabilities of MFC

    High-order methods for diffuse-interface models in compressible multi-medium flows: a review

    Get PDF
    The diffuse interface models, part of the family of the front capturing methods, provide an efficient and robust framework for the simulation of multi-species flows. They allow the integration of additional physical phenomena of increasing complexity while ensuring discrete conservation of mass, momentum, and energy. The main drawback brought by the adoption of these models consists of the interface smearing, increasing with the simulation time, therefore, requiring a counteraction through the introduction of sharpening terms and a careful selection of the discretization level. In recent years, the diffuse interface models have been solved using several numerical frameworks including finite volume, discontinuous Galerkin, and hybrid lattice Boltzmann method, in conjunction with shock and contact wave capturing schemes. The present review aims to present the recent advancements of high-order accuracy schemes with the capability of solving discontinuities without the introduction of numerical instabilities and to put them in perspective for the solution of multi-species flows with the diffuse interface method.Engineering and Physical Sciences Research Council (EPSRC): 2497012. Innovate UK: 263261. Airbus U

    Finite-volume WENO scheme for viscous compressible multicomponent flows

    Get PDF
    We develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navier–Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, i.e. it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten–Lax–van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes. A third-order total variation diminishing (TVD) Runge–Kutta (RK) algorithm is employed to march the solution in time. The derivation is generalized to three dimensions and nonuniform Cartesian grids. A two-point, fourth-order, Gaussian quadrature rule is utilized to build the spatial averages of the reconstructed variables inside the cells, as well as at cell boundaries. The algorithm is therefore fourth-order accurate in space and third-order accurate in time in smooth regions of the flow. We corroborate the properties of our numerical method by considering several challenging one-, two- and three-dimensional test cases, the most complex of which is the asymmetric collapse of an air bubble submerged in a cylindrical water cavity that is embedded in 10% gelatin
    • …
    corecore