5,701 research outputs found

    A Coordinated Approach to Channel Estimation in Large-scale Multiple-antenna Systems

    Full text link
    This paper addresses the problem of channel estimation in multi-cell interference-limited cellular networks. We consider systems employing multiple antennas and are interested in both the finite and large-scale antenna number regimes (so-called "massive MIMO"). Such systems deal with the multi-cell interference by way of per-cell beamforming applied at each base station. Channel estimation in such networks, which is known to be hampered by the pilot contamination effect, constitute a major bottleneck for overall performance. We present a novel approach which tackles this problem by enabling a low-rate coordination between cells during the channel estimation phase itself. The coordination makes use of the additional second-order statistical information about the user channels, which are shown to offer a powerful way of discriminating across interfering users with even strongly correlated pilot sequences. Importantly, we demonstrate analytically that in the large-number-of-antennas regime, the pilot contamination effect is made to vanish completely under certain conditions on the channel covariance. Gains over the conventional channel estimation framework are confirmed by our simulations for even small antenna array sizes.Comment: 10 pages, 6 figures, to appear in IEEE Journal on Selected Areas in Communication

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Achieving "Massive MIMO" Spectral Efficiency with a Not-so-Large Number of Antennas

    Full text link
    The main focus and contribution of this paper is a novel network-MIMO TDD architecture that achieves spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell. The proposed architecture is based on a family of network-MIMO schemes defined by small clusters of cooperating base stations, zero-forcing multiuser MIMO precoding with suitable inter-cluster interference constraints, uplink pilot signals reuse across cells, and frequency reuse. The key idea consists of partitioning the users population into geographically determined "bins", such that all users in the same bin are statistically equivalent, and use the optimal network-MIMO architecture in the family for each bin. A scheduler takes care of serving the different bins on the time-frequency slots, in order to maximize a desired network utility function that captures some desired notion of fairness. This results in a mixed-mode network-MIMO architecture, where different schemes, each of which is optimized for the served user bin, are multiplexed in time-frequency. In order to carry out the performance analysis and the optimization of the proposed architecture in a clean and computationally efficient way, we consider the large-system regime where the number of users, the number of antennas, and the channel coherence block length go to infinity with fixed ratios. The performance predicted by the large-system asymptotic analysis matches very well the finite-dimensional simulations. Overall, the system spectral efficiency obtained by the proposed architecture is similar to that achieved by "Massive MIMO", with a 10-fold reduction in the number of antennas at the base stations (roughly, from 500 to 50 antennas).Comment: Full version with appendice (proofs of theorems). A shortened version without appendice was submitted to IEEE Trans. on Wireless Commun. Appendix B was revised after submissio

    Dealing with Interference in Distributed Large-scale MIMO Systems: A Statistical Approach

    Full text link
    This paper considers the problem of interference control through the use of second-order statistics in massive MIMO multi-cell networks. We consider both the cases of co-located massive arrays and large-scale distributed antenna settings. We are interested in characterizing the low-rankness of users' channel covariance matrices, as such a property can be exploited towards improved channel estimation (so-called pilot decontamination) as well as interference rejection via spatial filtering. In previous work, it was shown that massive MIMO channel covariance matrices exhibit a useful finite rank property that can be modeled via the angular spread of multipath at a MIMO uniform linear array. This paper extends this result to more general settings including certain non-uniform arrays, and more surprisingly, to two dimensional distributed large scale arrays. In particular our model exhibits the dependence of the signal subspace's richness on the scattering radius around the user terminal, through a closed form expression. The applications of the low-rankness covariance property to channel estimation's denoising and low-complexity interference filtering are highlighted.Comment: 12 pages, 11 figures, to appear in IEEE Journal of Selected Topics in Signal Processin

    Electromagnetic Lens-focusing Antenna Enabled Massive MIMO: Performance Improvement and Cost Reduction

    Full text link
    Massive multiple-input multiple-output (MIMO) techniques have been recently advanced to tremendously improve the performance of wireless communication networks. However, the use of very large antenna arrays at the base stations (BSs) brings new issues, such as the significantly increased hardware and signal processing costs. In order to reap the enormous gain of massive MIMO and yet reduce its cost to an affordable level, this paper proposes a novel system design by integrating an electromagnetic (EM) lens with the large antenna array, termed the EM-lens enabled MIMO. The EM lens has the capability of focusing the power of an incident wave to a small area of the antenna array, while the location of the focal area varies with the angle of arrival (AoA) of the wave. Therefore, in practical scenarios where the arriving signals from geographically separated users have different AoAs, the EM-lens enabled system provides two new benefits, namely energy focusing and spatial interference rejection. By taking into account the effects of imperfect channel estimation via pilot-assisted training, in this paper we analytically show that the average received signal-to-noise ratio (SNR) in both the single-user and multiuser uplink transmissions can be strictly improved by the EM-lens enabled system. Furthermore, we demonstrate that the proposed design makes it possible to considerably reduce the hardware and signal processing costs with only slight degradations in performance. To this end, two complexity/cost reduction schemes are proposed, which are small-MIMO processing with parallel receiver filtering applied over subgroups of antennas to reduce the computational complexity, and channel covariance based antenna selection to reduce the required number of radio frequency (RF) chains. Numerical results are provided to corroborate our analysis.Comment: 30 pages, 9 figure
    corecore