133 research outputs found

    Unsupervised Machine Learning based Energy Efficient Routing for Mobile Ad-Hoc Networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) are temporary networks formed by a group of mobile hosts without the need for centralized administration or specific support services. Energy consumption is a critical issue in MANETs due to their reliance on limited battery resources. Reducing energy consumption is crucial for increasing network lifespan and throughput. Existing energy-saving techniques often fall short in their effectiveness. This research proposes a novel approach that combines a proactive MANET routing protocol with an energy-efficient strategy to address these limitations. The proposed solution considers both node mobility and energy levels in the routing process. Traditional AODV routing relies on flooding, which broadcasts RREQ packets to all nodes within the sender's range. This often leads to unnecessary retransmissions of RREQ and RREP packets, resulting in collisions and network congestion. To overcome this issue, we propose an optimized route discovery mechanism for AODV. The key idea is to leverage the K-means clustering algorithm to select the optimal cluster of nodes to forward RREQ packets instead of relying on broadcasting. This approach aims to alleviate network congestion and reduce end-to-end delay by minimizing unnecessary control packet transmissions

    Survey on Multipath QoS Routing Protocols in MANET

    Get PDF
    ABSTRACT: Mobile Ad-hoc Networks (MANET) are infrastructure less wireless network in which nodes communicate through radio waves. Routing in MANET is a tough aspect because of its dynamic topology. To deliver the data to the destination is not the only requirement. It should reach the destination fulfilling the quality of service (QoS) requirements. To provide QoS is challenging in MANET because of the dynamic nature of nodes. This paper presents an overview of multipath QoS routing protocols

    Energy Efficient MANET Protocol Using Cross Layer Design for Military Applications

    Get PDF
    In military applications mobile adhoc network plays very important role because it is specifically designed network for on demand requirement and in situations where set up of physical network is not possible. This special type of network which takes control in infrastructure less communication handles serious challenges tactfully such as highly robust and dynamic military work stations, devices and smaller sub-networks in the battle field. Therefore there is a high demand of designing efficient routing protocols ensuring security and reliability for successful transmission of highly sensitive and confidential military information in defence networks. With this objective, a power efficient network layer routing protocol in the network for military application is designed and simulated using a new cross layer approach of design to increase reliability and network lifetime up to a greater extent.

    A Mobile Ad Hoc Network Routing Protocols: A Comparative Study

    Get PDF
    Mobile Ad hoc NETworks (MANET), are complex and distributed networks that are dynamic. Which are infrastructure less and multi-hop in nature. The communication of a node can be either direct or through intermediate nodes without a fixed and dedicated infrastructure. Hence it is necessary to design an efficient routing protocol for ad hoc network which can address the issues of MANET efficiently. In ad hoc, routing algorithms are classified into nine categories namely: source-initiated (reactive), table-driven (proactive), hybrid, hierarchical, multipath, multicast, location-aware, geographical-multicast and power-aware. This paper presents a survey and to review a comparative study about various routing protocols under each of these categories. Additionally, brief discussions about major routing issues are addressed. This survey paper focuses on the taxonomy related to ad hoc routing techniques and compares the features of routing protocols

    Improving routing performance of multipath ad hoc on-demand distance vector in mobile add hoc networks.

    Get PDF
    The aim of this research is to improve routing fault tolerance in Mobile Ad hoc Networks (MANETs) by optimising mUltipath routing in a well-studied reactive and single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The research also aims to prove the effect of varying waiting time of Route Reply (RREP) procedure and utilising the concept of efficient routes on the performance of multipath extensions to AODV. Two novel multipath routing approaches are developed in this thesis as new extensions to AODV to optimise routing overhead by improving Route Discovery Process (RDP) and Route Maintenance Process (RMP) of multipath AODV. The first approach is a Iinkdisjoint multipath extension called 'Thresho)d efficient Routes in multipath AODV' (TRAODV) that optimises routing packets ~verhead by improving the RDP of AODV which is achieved by detecting the waiting time required for RREP procedure to receive a threshold number of efficient routes. The second approach is also a link-disjoint mUltipath extension called 'On-demand Route maintenance in Multipath AoDv' (ORMAD) which is an extension to TRAODV that optimises routing packets and delay overhead by improving the RMP of TRAODV. ORMAD applies the concepts of threshold waiting time and efficient routes to both phases RDP and RMP. It also applies RMP only to efficient routes which are selected in the RDP and when a route fails, it invokes a local repair procedure between upstream and downstream nodes of the broken link. This mechanism produces a set of alternative subroutes with less number of hops which enhances route efficiency and consequently minimises the routing overhead. TRAODV and ORMAD are implemented and evaluated against two existing multipath extensions to,AODV protocol and two traditional multipath protocols. The existing extensions to AODV used in the evaluation are a well-known protocol called Ad hoc On-demand Multipath Distance Vector (AOMDV) and a recent extension called Multiple Route AODV (MRAODV) protocol which is extended in this thesis to the new approach TRAODV while the traditional multipath protocols used in the evaluation are Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA). Protocols are implemented using NS2 and evaluated under the same simulation environment in terms of four performance metrics; packet delivery fraction, average end-to-end delay, routing packets overhead, and throughput. Simulation results of TRAODV evaluation show that the average number of routes stored in a routing table of MRAODV protocol is always larger than the average number of routes in TRAODV. Simulation results show that TRAODV reduces the overall routing packets overhead compared to both extensions AOMDV and MRAODV, especially for large network size and high mobility. A vital drawback of TRAODV is that its performance is reduced compared to AOMDV and MRAODV in terms of average end-to-end delay. Additionally, TORA still outperforms TRAODV and the other extensions to AODV in terms of routing packets overhead. In order to overcome the drawbacks of TRAODV, ORMAD is developed by improving the RDP of TRAODV. The performance of ORMAD is evaluated against RREP waiting time using the idea of utilising the efficient routes in both phases RDP and RMP. Simulation results of ORMAD show that the performance is affected by varying the two RREP waiting times of both RDP and RMP in different scenarios. As shown by the simulation results, applying the short and long waiting times in both phases tends to less performance in terms of routing packets overhead while applying the moderate waiting times tends to better performance. ORMAD enhances routing packets overhead and the average end-to-end delay compared to TRAODV, especially in high mobility scenarios. ORMAD has the closest performance to TORA protocol in terms of routing packets overhead compared to ~M~a~M~OW . Relevant concepts are formalised for ORMAD approach and conducted as an analytical model in this thesis involving the\vhole process of multipath routing in AODV extensions. ORMAD analytical model describes how the two phases RDP and RMP interact with each other with regard to two performance metrics; total number of detected routes and Route Efficiency.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Surveying Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks

    Get PDF
    A focus of the scientific community is to design network oriented position-based routing protocols and this has resulted in a very high number of algorithms, different in approach and performance and each suited only to particular applications. However, though numerous, very few position-based algorithms have actually been adopted for commercial purposes. This article is a survey of almost 50 position-based routing protocols and it comes as an aid in the implementation of this type of routing in various applications which may need to consider the advantages and pitfalls of position-based routing. An emphasis is made on geographic routing, whose notion is clarified as a more restrictive and more efficient type of position-based routing. The protocols are therefore divided into geographic and non-geographic routing protocols and each is characterized according to a number of network design issues and presented in a comparative manner from multiple points of view. The main requirements of current general applications are also studied and, depending on these, the survey proposes a number of protocols for use in particular application areas. This aims to help both researchers and potential users assess and choose the protocol best suited to their interest
    corecore