4 research outputs found

    Answering questions by learning to rank -- Learning to rank by answering questions

    Full text link
    Answering multiple-choice questions in a setting in which no supporting documents are explicitly provided continues to stand as a core problem in natural language processing. The contribution of this article is two-fold. First, it describes a method which can be used to semantically rank documents extracted from Wikipedia or similar natural language corpora. Second, we propose a model employing the semantic ranking that holds the first place in two of the most popular leaderboards for answering multiple-choice questions: ARC Easy and Challenge. To achieve this, we introduce a self-attention based neural network that latently learns to rank documents by their importance related to a given question, whilst optimizing the objective of predicting the correct answer. These documents are considered relevant contexts for the underlying question. We have published the ranked documents so that they can be used off-the-shelf to improve downstream decision models.Comment: Presented at EMNLP 2019; 10 pages, 5 figure

    Knowledge Fusion and Semantic Knowledge Ranking for Open Domain Question Answering

    Full text link
    Open Domain Question Answering requires systems to retrieve external knowledge and perform multi-hop reasoning by composing knowledge spread over multiple sentences. In the recently introduced open domain question answering challenge datasets, QASC and OpenBookQA, we need to perform retrieval of facts and compose facts to correctly answer questions. In our work, we learn a semantic knowledge ranking model to re-rank knowledge retrieved through Lucene based information retrieval systems. We further propose a "knowledge fusion model" which leverages knowledge in BERT-based language models with externally retrieved knowledge and improves the knowledge understanding of the BERT-based language models. On both OpenBookQA and QASC datasets, the knowledge fusion model with semantically re-ranked knowledge outperforms previous attempts.Comment: 9 pages. 4 figures, 4 table

    Natural Language QA Approaches using Reasoning with External Knowledge

    Full text link
    Question answering (QA) in natural language (NL) has been an important aspect of AI from its early days. Winograd's ``councilmen'' example in his 1972 paper and McCarthy's Mr. Hug example of 1976 highlights the role of external knowledge in NL understanding. While Machine Learning has been the go-to approach in NL processing as well as NL question answering (NLQA) for the last 30 years, recently there has been an increasingly emphasized thread on NLQA where external knowledge plays an important role. The challenges inspired by Winograd's councilmen example, and recent developments such as the Rebooting AI book, various NLQA datasets, research on knowledge acquisition in the NLQA context, and their use in various NLQA models have brought the issue of NLQA using ``reasoning'' with external knowledge to the forefront. In this paper, we present a survey of the recent work on them. We believe our survey will help establish a bridge between multiple fields of AI, especially between (a) the traditional fields of knowledge representation and reasoning and (b) the field of NL understanding and NLQA.Comment: 6 pages, 3 figures, Work in Progres

    Using the Hammer Only on Nails: A Hybrid Method for Evidence Retrieval for Question Answering

    Full text link
    Evidence retrieval is a key component of explainable question answering (QA). We argue that, despite recent progress, transformer network-based approaches such as universal sentence encoder (USE-QA) do not always outperform traditional information retrieval (IR) methods such as BM25 for evidence retrieval for QA. We introduce a lexical probing task that validates this observation: we demonstrate that neural IR methods have the capacity to capture lexical differences between questions and answers, but miss obvious lexical overlap signal. Learning from this probing analysis, we introduce a hybrid approach for evidence retrieval that combines the advantages of both IR directions. Our approach uses a routing classifier that learns when to direct incoming questions to BM25 vs. USE-QA for evidence retrieval using very simple statistics, which can be efficiently extracted from the top candidate evidence sentences produced by a BM25 model. We demonstrate that this hybrid evidence retrieval generally performs better than either individual retrieval strategy on three QA datasets: OpenBookQA, ReQA SQuAD, and ReQA NQ. Furthermore, we show that the proposed routing strategy is considerably faster than neural methods, with a runtime that is up to 5 times faster than USE-QA
    corecore