43,124 research outputs found

    Context-sensitive Spelling Correction Using Google Web 1T 5-Gram Information

    Full text link
    In computing, spell checking is the process of detecting and sometimes providing spelling suggestions for incorrectly spelled words in a text. Basically, a spell checker is a computer program that uses a dictionary of words to perform spell checking. The bigger the dictionary is, the higher is the error detection rate. The fact that spell checkers are based on regular dictionaries, they suffer from data sparseness problem as they cannot capture large vocabulary of words including proper names, domain-specific terms, technical jargons, special acronyms, and terminologies. As a result, they exhibit low error detection rate and often fail to catch major errors in the text. This paper proposes a new context-sensitive spelling correction method for detecting and correcting non-word and real-word errors in digital text documents. The approach hinges around data statistics from Google Web 1T 5-gram data set which consists of a big volume of n-gram word sequences, extracted from the World Wide Web. Fundamentally, the proposed method comprises an error detector that detects misspellings, a candidate spellings generator based on a character 2-gram model that generates correction suggestions, and an error corrector that performs contextual error correction. Experiments conducted on a set of text documents from different domains and containing misspellings, showed an outstanding spelling error correction rate and a drastic reduction of both non-word and real-word errors. In a further study, the proposed algorithm is to be parallelized so as to lower the computational cost of the error detection and correction processes.Comment: LACSC - Lebanese Association for Computational Sciences - http://www.lacsc.or

    A large list of confusion sets for spellchecking assessed against a corpus of real-word errors

    Get PDF
    One of the methods that has been proposed for dealing with real-word errors (errors that occur when a correctly spelled word is substituted for the one intended) is the "confusion-set" approach - a confusion set being a small group of words that are likely to be confused with one another. Using a list of confusion sets drawn up in advance, a spellchecker, on finding one of these words in a text, can assess whether one of the other members of its set would be a better fit and, if it appears to be so, propose that word as a correction. Much of the research using this approach has suffered from two weaknesses. The first is the small number of confusion sets used. The second is that systems have largely been tested on artificial errors. In this paper we address these two weaknesses. We describe the creation of a realistically sized list of confusion sets, then the assembling of a corpus of real-word errors, and then we assess the potential of that list in relation to that corpus

    Fifty years of spellchecking

    Get PDF
    A short history of spellchecking from the late 1950s to the present day, describing its development through dictionary lookup, affix stripping, correction, confusion sets, and edit distance to the use of gigantic databases

    Ordering the suggestions of a spellchecker without using context.

    Get PDF
    Having located a misspelling, a spellchecker generally offers some suggestions for the intended word. Even without using context, a spellchecker can draw on various types of information in ordering its suggestions. A series of experiments is described, beginning with a basic corrector that implements a well-known algorithm for reversing single simple errors, and making successive enhancements to take account of substring matches, pronunciation, known error patterns, syllable structure and word frequency. The improvement in the ordering produced by each enhancement is measured on a large corpus of misspellings. The final version is tested on other corpora against a widely used commercial spellchecker and a research prototype

    Detection is the central problem in real-word spelling correction

    Full text link
    Real-word spelling correction differs from non-word spelling correction in its aims and its challenges. Here we show that the central problem in real-word spelling correction is detection. Methods from non-word spelling correction, which focus instead on selection among candidate corrections, do not address detection adequately, because detection is either assumed in advance or heavily constrained. As we demonstrate in this paper, merely discriminating between the intended word and a random close variation of it within the context of a sentence is a task that can be performed with high accuracy using straightforward models. Trigram models are sufficient in almost all cases. The difficulty comes when every word in the sentence is a potential error, with a large set of possible candidate corrections. Despite their strengths, trigram models cannot reliably find true errors without introducing many more, at least not when used in the obvious sequential way without added structure. The detection task exposes weakness not visible in the selection task

    Applying Winnow to Context-Sensitive Spelling Correction

    Full text link
    Multiplicative weight-updating algorithms such as Winnow have been studied extensively in the COLT literature, but only recently have people started to use them in applications. In this paper, we apply a Winnow-based algorithm to a task in natural language: context-sensitive spelling correction. This is the task of fixing spelling errors that happen to result in valid words, such as substituting {\it to\/} for {\it too}, {\it casual\/} for {\it causal}, and so on. Previous approaches to this problem have been statistics-based; we compare Winnow to one of the more successful such approaches, which uses Bayesian classifiers. We find that: (1)~When the standard (heavily-pruned) set of features is used to describe problem instances, Winnow performs comparably to the Bayesian method; (2)~When the full (unpruned) set of features is used, Winnow is able to exploit the new features and convincingly outperform Bayes; and (3)~When a test set is encountered that is dissimilar to the training set, Winnow is better than Bayes at adapting to the unfamiliar test set, using a strategy we will present for combining learning on the training set with unsupervised learning on the (noisy) test set.Comment: 9 page
    corecore