196 research outputs found

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks

    Full text link
    The unprecedented increase in the usage of computer vision technology in society goes hand in hand with an increased concern in data privacy. In many real-world scenarios like people tracking or action recognition, it is important to be able to process the data while taking careful consideration in protecting people's identity. We propose and develop CIAGAN, a model for image and video anonymization based on conditional generative adversarial networks. Our model is able to remove the identifying characteristics of faces and bodies while producing high-quality images and videos that can be used for any computer vision task, such as detection or tracking. Unlike previous methods, we have full control over the de-identification (anonymization) procedure, ensuring both anonymization as well as diversity. We compare our method to several baselines and achieve state-of-the-art results.Comment: CVPR 202

    DeepPrivacy: A Generative Adversarial Network for Face Anonymization

    Full text link
    We propose a novel architecture which is able to automatically anonymize faces in images while retaining the original data distribution. We ensure total anonymization of all faces in an image by generating images exclusively on privacy-safe information. Our model is based on a conditional generative adversarial network, generating images considering the original pose and image background. The conditional information enables us to generate highly realistic faces with a seamless transition between the generated face and the existing background. Furthermore, we introduce a diverse dataset of human faces, including unconventional poses, occluded faces, and a vast variability in backgrounds. Finally, we present experimental results reflecting the capability of our model to anonymize images while preserving the data distribution, making the data suitable for further training of deep learning models. As far as we know, no other solution has been proposed that guarantees the anonymization of faces while generating realistic images.Comment: Accepted to ISVC 201

    Generative Adversarial Network based machine for fake data generation

    Get PDF
    This paper introduces a first approach on using Generative Adversarial Networks (GANs) for the generation of fake data, with the objective of anonymizing patients information in the health sector. This is intended to create valuable data that can be used both, in educational and research areas, while avoiding the risk of a sensitive data leakage. For this purpose, firstly a thorough research on GAN’s state of the art and available databases has been developed. The outcome of the project is a GAN system prototype adapted to generate raw data that imitates samples such as users variable status on hypothyroidism or a cardiogram report. The performance of this prototype has been checked and satisfactory results have been obtained for this first phase. Moreover, a novel research pathway has been opened so further research can be developed

    GANonymization: A GAN-based Face Anonymization Framework for Preserving Emotional Expressions

    Full text link
    In recent years, the increasing availability of personal data has raised concerns regarding privacy and security. One of the critical processes to address these concerns is data anonymization, which aims to protect individual privacy and prevent the release of sensitive information. This research focuses on the importance of face anonymization. Therefore, we introduce GANonymization, a novel face anonymization framework with facial expression-preserving abilities. Our approach is based on a high-level representation of a face, which is synthesized into an anonymized version based on a generative adversarial network (GAN). The effectiveness of the approach was assessed by evaluating its performance in removing identifiable facial attributes to increase the anonymity of the given individual face. Additionally, the performance of preserving facial expressions was evaluated on several affect recognition datasets and outperformed the state-of-the-art methods in most categories. Finally, our approach was analyzed for its ability to remove various facial traits, such as jewelry, hair color, and multiple others. Here, it demonstrated reliable performance in removing these attributes. Our results suggest that GANonymization is a promising approach for anonymizing faces while preserving facial expressions.Comment: 26 pages, 11 figures, 6 tables, ACM Transactions on Multimedia Computing, Communications, and Application

    Anonymization for Skeleton Action Recognition

    Full text link
    Skeleton-based action recognition attracts practitioners and researchers due to the lightweight, compact nature of datasets. Compared with RGB-video-based action recognition, skeleton-based action recognition is a safer way to protect the privacy of subjects while having competitive recognition performance. However, due to improvements in skeleton estimation algorithms as well as motion- and depth-sensors, more details of motion characteristics can be preserved in the skeleton dataset, leading to potential privacy leakage. To investigate the potential privacy leakage from skeleton datasets, we first train a classifier to categorize sensitive private information from trajectories of joints. Our preliminary experiments show that the gender classifier achieves 87% accuracy on average and the re-identification task achieves 80% accuracy on average for three baseline models: Shift-GCN, MS-G3D, and 2s-AGCN. We propose an adversarial anonymization algorithm to protect potential privacy leakage from the skeleton dataset. Experimental results show that an anonymized dataset can reduce the risk of privacy leakage while having marginal effects on action recognition performance

    Deep Generative Models: The winning key for large and easily accessible ECG datasets?

    Get PDF
    Large high-quality datasets are essential for building powerful artificial intelligence (AI) algorithms capable of supporting advancement in cardiac clinical research. However, researchers working with electrocardiogram (ECG) signals struggle to get access and/or to build one. The aim of the present work is to shed light on a potential solution to address the lack of large and easily accessible ECG datasets. Firstly, the main causes of such a lack are identified and examined. Afterward, the potentials and limitations of cardiac data generation via deep generative models (DGMs) are deeply analyzed. These very promising algorithms have been found capable not only of generating large quantities of ECG signals but also of supporting data anonymization processes, to simplify data sharing while respecting patients' privacy. Their application could help research progress and cooperation in the name of open science. However several aspects, such as a standardized synthetic data quality evaluation and algorithm stability, need to be further explored
    corecore