2,005 research outputs found

    Deep Structured Energy Based Models for Anomaly Detection

    Full text link
    In this paper, we attack the anomaly detection problem by directly modeling the data distribution with deep architectures. We propose deep structured energy based models (DSEBMs), where the energy function is the output of a deterministic deep neural network with structure. We develop novel model architectures to integrate EBMs with different types of data such as static data, sequential data, and spatial data, and apply appropriate model architectures to adapt to the data structure. Our training algorithm is built upon the recent development of score matching \cite{sm}, which connects an EBM with a regularized autoencoder, eliminating the need for complicated sampling method. Statistically sound decision criterion can be derived for anomaly detection purpose from the perspective of the energy landscape of the data distribution. We investigate two decision criteria for performing anomaly detection: the energy score and the reconstruction error. Extensive empirical studies on benchmark tasks demonstrate that our proposed model consistently matches or outperforms all the competing methods.Comment: To appear in ICML 201

    Robust, Deep and Inductive Anomaly Detection

    Full text link
    PCA is a classical statistical technique whose simplicity and maturity has seen it find widespread use as an anomaly detection technique. However, it is limited in this regard by being sensitive to gross perturbations of the input, and by seeking a linear subspace that captures normal behaviour. The first issue has been dealt with by robust PCA, a variant of PCA that explicitly allows for some data points to be arbitrarily corrupted, however, this does not resolve the second issue, and indeed introduces the new issue that one can no longer inductively find anomalies on a test set. This paper addresses both issues in a single model, the robust autoencoder. This method learns a nonlinear subspace that captures the majority of data points, while allowing for some data to have arbitrary corruption. The model is simple to train and leverages recent advances in the optimisation of deep neural networks. Experiments on a range of real-world datasets highlight the model's effectiveness.Comment: Accepted ECML PKDD 2017 Skopje, Macedonia 18-22 September the European Conference On Machine Learning & Principles and Practice of Knowledge Discover

    Catching Anomalous Distributed Photovoltaics: An Edge-based Multi-modal Anomaly Detection

    Full text link
    A significant challenge in energy system cyber security is the current inability to detect cyber-physical attacks targeting and originating from distributed grid-edge devices such as photovoltaics (PV) panels, smart flexible loads, and electric vehicles. We address this concern by designing and developing a distributed, multi-modal anomaly detection approach that can sense the health of the device and the electric power grid from the edge. This is realized by exploiting unsupervised machine learning algorithms on multiple sources of time-series data, fusing these multiple local observations and flagging anomalies when a deviation from the normal behavior is observed. We particularly focus on the cyber-physical threats to the distributed PVs that has the potential to cause local disturbances or grid instabilities by creating supply-demand mismatch, reverse power flow conditions etc. We use an open source power system simulation tool called GridLAB-D, loaded with real smart home and solar datasets to simulate the smart grid scenarios and to illustrate the impact of PV attacks on the power system. Various attacks targeting PV panels that create voltage fluctuations, reverse power flow etc were designed and performed. We observe that while individual unsupervised learning algorithms such as OCSVMs, Corrupt RF and PCA surpasses in identifying particular attack type, PCA with Convex Hull outperforms all algorithms in identifying all designed attacks with a true positive rate of 83.64% and an accuracy of 95.78%. Our key insight is that due to the heterogeneous nature of the distribution grid and the uncertainty in the type of the attack being launched, relying on single mode of information for defense can lead to increased false alarms and missed detection rates as one can design attacks to hide within those uncertainties and remain stealthy

    Adversarially Learned One-Class Classifier for Novelty Detection

    Full text link
    Novelty detection is the process of identifying the observation(s) that differ in some respect from the training observations (the target class). In reality, the novelty class is often absent during training, poorly sampled or not well defined. Therefore, one-class classifiers can efficiently model such problems. However, due to the unavailability of data from the novelty class, training an end-to-end deep network is a cumbersome task. In this paper, inspired by the success of generative adversarial networks for training deep models in unsupervised and semi-supervised settings, we propose an end-to-end architecture for one-class classification. Our architecture is composed of two deep networks, each of which trained by competing with each other while collaborating to understand the underlying concept in the target class, and then classify the testing samples. One network works as the novelty detector, while the other supports it by enhancing the inlier samples and distorting the outliers. The intuition is that the separability of the enhanced inliers and distorted outliers is much better than deciding on the original samples. The proposed framework applies to different related applications of anomaly and outlier detection in images and videos. The results on MNIST and Caltech-256 image datasets, along with the challenging UCSD Ped2 dataset for video anomaly detection illustrate that our proposed method learns the target class effectively and is superior to the baseline and state-of-the-art methods.Comment: CVPR 2018 Pape

    A Unifying Review of Deep and Shallow Anomaly Detection

    Full text link
    Deep learning approaches to anomaly detection have recently improved the state of the art in detection performance on complex datasets such as large collections of images or text. These results have sparked a renewed interest in the anomaly detection problem and led to the introduction of a great variety of new methods. With the emergence of numerous such methods, including approaches based on generative models, one-class classification, and reconstruction, there is a growing need to bring methods of this field into a systematic and unified perspective. In this review we aim to identify the common underlying principles as well as the assumptions that are often made implicitly by various methods. In particular, we draw connections between classic 'shallow' and novel deep approaches and show how this relation might cross-fertilize or extend both directions. We further provide an empirical assessment of major existing methods that is enriched by the use of recent explainability techniques, and present specific worked-through examples together with practical advice. Finally, we outline critical open challenges and identify specific paths for future research in anomaly detection.Comment: 40 pages; accepted for publication in the Proceedings of the IEEE

    Estimation of Dimensions Contributing to Detected Anomalies with Variational Autoencoders

    Full text link
    Anomaly detection using dimensionality reduction has been an essential technique for monitoring multidimensional data. Although deep learning-based methods have been well studied for their remarkable detection performance, their interpretability is still a problem. In this paper, we propose a novel algorithm for estimating the dimensions contributing to the detected anomalies by using variational autoencoders (VAEs). Our algorithm is based on an approximative probabilistic model that considers the existence of anomalies in the data, and by maximizing the log-likelihood, we estimate which dimensions contribute to determining data as an anomaly. The experiments results with benchmark datasets show that our algorithm extracts the contributing dimensions more accurately than baseline methods

    Energy-based Models for Video Anomaly Detection

    Full text link
    Automated detection of abnormalities in data has been studied in research area in recent years because of its diverse applications in practice including video surveillance, industrial damage detection and network intrusion detection. However, building an effective anomaly detection system is a non-trivial task since it requires to tackle challenging issues of the shortage of annotated data, inability of defining anomaly objects explicitly and the expensive cost of feature engineering procedure. Unlike existing appoaches which only partially solve these problems, we develop a unique framework to cope the problems above simultaneously. Instead of hanlding with ambiguous definition of anomaly objects, we propose to work with regular patterns whose unlabeled data is abundant and usually easy to collect in practice. This allows our system to be trained completely in an unsupervised procedure and liberate us from the need for costly data annotation. By learning generative model that capture the normality distribution in data, we can isolate abnormal data points that result in low normality scores (high abnormality scores). Moreover, by leverage on the power of generative networks, i.e. energy-based models, we are also able to learn the feature representation automatically rather than replying on hand-crafted features that have been dominating anomaly detection research over many decades. We demonstrate our proposal on the specific application of video anomaly detection and the experimental results indicate that our method performs better than baselines and are comparable with state-of-the-art methods in many benchmark video anomaly detection datasets

    Detection of Unknown Anomalies in Streaming Videos with Generative Energy-based Boltzmann Models

    Full text link
    Abnormal event detection is one of the important objectives in research and practical applications of video surveillance. However, there are still three challenging problems for most anomaly detection systems in practical setting: limited labeled data, ambiguous definition of "abnormal" and expensive feature engineering steps. This paper introduces a unified detection framework to handle these challenges using energy-based models, which are powerful tools for unsupervised representation learning. Our proposed models are firstly trained on unlabeled raw pixels of image frames from an input video rather than hand-crafted visual features; and then identify the locations of abnormal objects based on the errors between the input video and its reconstruction produced by the models. To handle video stream, we develop an online version of our framework, wherein the model parameters are updated incrementally with the image frames arriving on the fly. Our experiments show that our detectors, using Restricted Boltzmann Machines (RBMs) and Deep Boltzmann Machines (DBMs) as core modules, achieve superior anomaly detection performance to unsupervised baselines and obtain accuracy comparable with the state-of-the-art approaches when evaluating at the pixel-level. More importantly, we discover that our system trained with DBMs is able to simultaneously perform scene clustering and scene reconstruction. This capacity not only distinguishes our method from other existing detectors but also offers a unique tool to investigate and understand how the model works.Comment: This manuscript is under consideration at Pattern Recognition Letter

    Classification-Based Anomaly Detection for General Data

    Full text link
    Anomaly detection, finding patterns that substantially deviate from those seen previously, is one of the fundamental problems of artificial intelligence. Recently, classification-based methods were shown to achieve superior results on this task. In this work, we present a unifying view and propose an open-set method, GOAD, to relax current generalization assumptions. Furthermore, we extend the applicability of transformation-based methods to non-image data using random affine transformations. Our method is shown to obtain state-of-the-art accuracy and is applicable to broad data types. The strong performance of our method is extensively validated on multiple datasets from different domains.Comment: ICLR'2

    One-Class Classification: A Survey

    Full text link
    One-Class Classification (OCC) is a special case of multi-class classification, where data observed during training is from a single positive class. The goal of OCC is to learn a representation and/or a classifier that enables recognition of positively labeled queries during inference. This topic has received considerable amount of interest in the computer vision, machine learning and biometrics communities in recent years. In this article, we provide a survey of classical statistical and recent deep learning-based OCC methods for visual recognition. We discuss the merits and drawbacks of existing OCC approaches and identify promising avenues for research in this field. In addition, we present a discussion of commonly used datasets and evaluation metrics for OCC
    • …
    corecore