184,354 research outputs found

    Magnetically actuated tuning method for Gunn oscillators

    Get PDF
    A tunable microwave generator based on the Gunn effect is disclosed. The generator includes a semiconductor material which exhibits the Gunn effect when current flows between anode and cathode end contacts. The material has a plurality of sides each with a scratch at a different distance from the anode contact. A magnetic field is produced by a magnet placed about the semiconductor field. The Lorentz force produced as a function of the current flow and the magnetic field drive the electrons to the surface of one of the sides to cause nucleation to occur at the scratch. A domain formed thereat travels to the anode contact to provide pulses at a frequency which is related to the distance between the scratch and the anode contact

    The Micro Slit Gas Detector

    Full text link
    We describe the first tests with a new proportional gas detector. Its geometry consists in slits opened in a copper metallized kapton foil with 30 micron anode strips suspended in these openings. In this way the multiplication process is similar to a standard MSGC. The fundamental difference is the absence of an insulating substrate around the anode. Also the material budget is significantly reduced, and the problems related to charging-up or polarization are removed. Ageing properties of this detector are under study.Comment: 13 pages tex file, 10 figures ep

    Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters

    Get PDF
    Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented

    Suitability of granular carbon as an anode material for sediment microbial fuel cells

    Get PDF
    Purpose: Sediment-microbial fuel cells (S-MFC) are bio-electrochemical devices that are able to oxidize organic matter directly into harvestable electrical power. The flux of organic matter into the sediment is rather low, therefore other researchers have introduced plants for a continues supply of organic matter to the anode electrode. Until now only interconnected materials have been considered as anode materials in S-MFC. Here granular carbon materials were investigated for their suitability as anode material in sediment microbial fuel cells. Materials and methods: Laboratory microcosms with 8 different electrode materials (granules, felts and cloths) were examined with controlled organic matter addition under brackish conditions. Current density, organic matter removal and microbial community composition were monitored using 16S-rRNA gene PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE). The main parameters investigated were the influence of the amount of electrode material applied to the sediment, the size of the granular material and the electrode configuration. Results and discussion: Felt material had an overall superior performance in terms of current density per amount of applied electrode material i.e. felt and granular anode obtained similar current densities (approx. 50–60 mA/m2) but felt materials required 29% less material to be applied. Yet, when growing plants, granular carbon is more suited because it is considered to restore, upon disturbance, the electrical connectivity within the anode compartment. Small granules (0.25–0.5 mm) gave the highest current density compared to larger granules (1-5 mm) of the same material. Granules with a rough surface had a better performance compared to smooth granules of the same size. The different granular materials lead to a selection of distinct microbial communities for each material, as shown by DGGE. Conclusions: Granular carbon is suited as anode material for sediment microbial fuel cells. This opens the perspective for application of MFC in cultivated areas. In a wider context, the application of granular carbon electrodes can also be an option for in-situ bioremediation of contaminated soils

    Three-Dimensional, Porous Anode for Use in Lithium-Ion Batteries and Method of Fabrication Thereof

    Get PDF
    A three-dimensional, porous anode material suitable for use in a lithium-ion cell. The three-dimensional, porous anode material includes active anode particles embedded within a carbon matrix. The porous structure of this novel anode material allows for the expansion and contraction of the anode without the anode delaminating or breaking apart, thus improving the life-cycle of the lithium-ion cell. An example of this three-dimensional porous anode material is a porous silicon-carbon composite formed using a bi-continuous micro-emulsion (BME) template

    Current collection by high voltage anodes in near ionospheric conditions

    Get PDF
    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density

    Application of Organic Solid Electrolytes

    Get PDF
    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability

    New energy storage concept uses tapes

    Get PDF
    Energy storage system uses movable permeable tapes with cathode and electrolyte material that is drawn across an anode to produce electric power. The system features long shelf life, high efficiency, and flexible operation
    corecore