139 research outputs found

    Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey

    Get PDF
    : Integration of high volume (high penetration) of photovoltaic (PV) generation with power grids consequently leads to some technical challenges that are mainly due to the intermittent nature of solar energy, the volume of data involved in the smart grid architecture, and the impact power electronic-based smart inverters. These challenges include reverse power flow, voltage fluctuations, power quality issues, dynamic stability, big data challenges and others. This paper investigates the existing challenges with the current level of PV penetration and looks into the challenges with high PV penetration in future scenarios such as smart cities, transactive energy, proliferation of plug-in hybrid electric vehicles (PHEVs), possible eclipse events, big data issues and environmental impacts. Within the context of these future scenarios, this paper reviewed the existing solutions and provides insights to new and future solutions that could be explored to ultimately address these issues and improve the smart grid’s security, reliability and resilienc

    Faculty Publications & Presentations, 2008-2009

    Get PDF

    Centrifugal Pump Fault Detection with Convolutional Neural Network Transfer Learning

    Get PDF
    The centrifugal pump is the workhorse of many industrial and domestic applications, such as water supply, wastewater treatment and heating. While modern pumps are reliable, their unexpected failures may jeopardise safety or lead to significant financial losses. Consequently, there is a strong demand for early fault diagnosis, detection and predictive monitoring systems. Most prior work on machine-learning based centrifugal pump fault detection is based on either synthetic data, simulation or data from test rigs in controlled laboratory conditions. In this research paper, we attempt to detect centrifugal pump faults using data collected from real operational pumps deployed in various places in collaboration with a specialist pump engineering company. The detection is done by binary classifying visual features of DQ/Concordia patterns with residual networks. Besides using a real dataset, the paper employs transfer learning from image detection domain to systematically solve a real-life problem in engineering domain. By feeding DQ image data to popular and high-performance residual network (e.g ResNet-34), the proposed approach achieved up to 85.51% of classification accuracy.<br/

    Induction Generator in Wind Power Systems

    Get PDF
    Wind power is the fastest growing renewable energy and is promising as the number one source of clean energy in the near future. Among various generators used to convert wind energy, the induction generator has attracted more attention due to its lower cost, lower requirement of maintenance, variable speed, higher energy capture efficiency, and improved power quality [1-2]. Generally, there are two types of induction generators widely used in wind power systems – Squirrel-Cage Induction Generator (SCIG) and Doubly-Fed Induction Generator (DFIG). The straightforward power conversion technique using SCIG is widely accepted in fixed-speed applications with less emphasis on the high efficiency and control of power flow. However, such direct connection with grid would allow the speed to vary in a very narrow range and thus limit the wind turbine utilization and power output. Another major problem with SCIG wind system is the source of reactive power; that is, an external reactive power compensator is required to hold distribution line voltage and prevent whole system from overload. On the other hand, the DFIG with variable-speed ability has higher energy capture efficiency and improved power quality, and thus dominates the large-scale power conversion applications. With the advent of power electronics techniques, a back-to-back converter, which consists of two bidirectional converters and a dc-link, acts as an optimal operation tracking interface between DFIG and loads [3-5]. Field orientation control (FOC) is applied to both rotor- and stator-side converters to achieve desirable control on voltage and power [6,7]

    Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems

    Get PDF
    This work presents a fault ride-through control scheme for a non-isolated power topology used in a hybrid energy storage system designed for DC microgrids. The hybrid system is formed by a lithium-ion battery bank and a supercapacitor module, both coordinated to achieve a high-energy and high-power combined storage system. This hybrid system is connected to a DC bus that manages the power flow of the microgrid. The power topology under consideration is based on the buck-boost bidirectional converter, and it is controlled through a bespoke modulation scheme to obtain low losses at nominal operation. The operation of the proposed control scheme during a DC bus short-circuit failure is shown, as well as a modification to the standard control to achieve fault ride-through capability once the fault is over. The proposed control provides a protection to the energy storage systems and the converter itself during the DC bus short-circuit fault. The operation of the converter is developed theoretically, and it has been verified through both simulations and experimental validation on a built prototype

    A chronological literature review of electric vehicle interactions with power distribution systems

    Get PDF
    In the last decade, the deployment of electric vehicles (EVs) has been largely promoted. This development has increased challenges in the power systems in the context of planning and operation due to the massive amount of recharge needed for EVs. Furthermore, EVs may also offer new opportunities and can be used to support the grid to provide auxiliary services. In this regard, and considering the research around EVs and power grids, this paper presents a chronological background review of EVs and their interactions with power systems, particularly electric distribution networks, considering publications from the IEEE Xplore database. The review is extended from 1973 to 2019 and is developed via systematic classification using key categories that describe the types of interactions between EVs and power grids. These interactions are in the framework of the power quality, study of scenarios, electricity markets, demand response, demand management, power system stability, Vehicle-to-Grid (V2G) concept, and optimal location of battery swap and charging stations.Introduction General Overview Chronological Review: Part I Chronological Review: Part II Brief Observations Conclusions and Future Works Final Reflections Author Contributions Funding Acknowledgments Conflicts of Interest Reference

    Two decades of condition monitoring methods for power devices

    Get PDF
    Condition monitoring (CM) of power semiconductor devices enhances converter reliability and customer service. Many studies have investigated the semiconductor devices failure modes, the sensor technologies, and the signal processing techniques to optimize the CM. Furthermore, the improvement of power devices’ CM thanks to the use of the Internet of Things and artificial intelligence technologies is rising in smart grids, transportation electrification, and so on. These technologies will be widespread in the future, where more and more smart techniques and smart sensors will enable a better estimation of the state of the health (SOH) of the devices. Considering the increasing use of power converters, CM is essential as the analysis of the data obtained from multiple sensors enables the prediction of the SOH, which, in turn, enables to properly schedule the maintenance, i.e., accounting for the trade-off between the maintenance cost and the cost and issues due to the device failure. From this perspective, this review paper summarizes past developments and recent advances of the various methods with the aim of describing the current state-of-the-art in CM research

    Bibliography of communication and research products 2012

    Get PDF
    This document presents a bibliography of NIOSH communication and research products for the year 2012. Product types include journal articles, book chapters, numbered publications, abstracts/proceedings, control technology reports, fatality assessment and control evaluation reports, fire fighter fatality investigation and prevention reports, an author index, a keyword Index, and the National Occupational Research Agenda (NORA) IndexI. Journal articles -- II. Books or book chapter -- III. NIOSH numbered publications -- IV. Proceedings -- V. Abstracts -- VI. Control technology reports -- VII. Fire fighter fatality investigation and prevention reports -- VIII. Health hazard evaluation reports -- IX. Author index-- X. Keyword index -- XI. National Occupational Research Agenda (NORA) index."April 2013."Also available via the World Wide Web as an Acrobat .pdf file (4.87 MB, 129 p.)

    Technology development of electric vehicles: A review

    Get PDF
    To reduce the dependence on oil and environmental pollution, the development of electric vehicles has been accelerated in many countries. The implementation of EVs, especially battery electric vehicles, is considered a solution to the energy crisis and environmental issues. This paper provides a comprehensive review of the technical development of EVs and emerging technologies for their future application. Key technologies regarding batteries, charging technology, electric motors and control, and charging infrastructure of EVs are summarized. This paper also highlights the technical challenges and emerging technologies for the improvement of efficiency, reliability, and safety of EVs in the coming stages as another contribution
    • …
    corecore