2,426 research outputs found

    Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image

    Get PDF
    We propose a unified formulation for the problem of 3D human pose estimation from a single raw RGB image that reasons jointly about 2D joint estimation and 3D pose reconstruction to improve both tasks. We take an integrated approach that fuses probabilistic knowledge of 3D human pose with a multi-stage CNN architecture and uses the knowledge of plausible 3D landmark locations to refine the search for better 2D locations. The entire process is trained end-to-end, is extremely efficient and obtains state- of-the-art results on Human3.6M outperforming previous approaches both on 2D and 3D errors.Comment: Paper presented at CVPR 1

    Exploring Shape Embedding for Cloth-Changing Person Re-Identification via 2D-3D Correspondences

    Full text link
    Cloth-Changing Person Re-Identification (CC-ReID) is a common and realistic problem since fashion constantly changes over time and people's aesthetic preferences are not set in stone. While most existing cloth-changing ReID methods focus on learning cloth-agnostic identity representations from coarse semantic cues (e.g. silhouettes and part segmentation maps), they neglect the continuous shape distributions at the pixel level. In this paper, we propose Continuous Surface Correspondence Learning (CSCL), a new shape embedding paradigm for cloth-changing ReID. CSCL establishes continuous correspondences between a 2D image plane and a canonical 3D body surface via pixel-to-vertex classification, which naturally aligns a person image to the surface of a 3D human model and simultaneously obtains pixel-wise surface embeddings. We further extract fine-grained shape features from the learned surface embeddings and then integrate them with global RGB features via a carefully designed cross-modality fusion module. The shape embedding paradigm based on 2D-3D correspondences remarkably enhances the model's global understanding of human body shape. To promote the study of ReID under clothing change, we construct 3D Dense Persons (DP3D), which is the first large-scale cloth-changing ReID dataset that provides densely annotated 2D-3D correspondences and a precise 3D mesh for each person image, while containing diverse cloth-changing cases over all four seasons. Experiments on both cloth-changing and cloth-consistent ReID benchmarks validate the effectiveness of our method.Comment: Accepted by ACM MM 202

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Automating image analysis by annotating landmarks with deep neural networks

    Full text link
    Image and video analysis is often a crucial step in the study of animal behavior and kinematics. Often these analyses require that the position of one or more animal landmarks are annotated (marked) in numerous images. The process of annotating landmarks can require a significant amount of time and tedious labor, which motivates the need for algorithms that can automatically annotate landmarks. In the community of scientists that use image and video analysis to study the 3D flight of animals, there has been a trend of developing more automated approaches for annotating landmarks, yet they fall short of being generally applicable. Inspired by the success of Deep Neural Networks (DNNs) on many problems in the field of computer vision, we investigate how suitable DNNs are for accurate and automatic annotation of landmarks in video datasets representative of those collected by scientists studying animals. Our work shows, through extensive experimentation on videos of hawkmoths, that DNNs are suitable for automatic and accurate landmark localization. In particular, we show that one of our proposed DNNs is more accurate than the current best algorithm for automatic localization of landmarks on hawkmoth videos. Moreover, we demonstrate how these annotations can be used to quantitatively analyze the 3D flight of a hawkmoth. To facilitate the use of DNNs by scientists from many different fields, we provide a self contained explanation of what DNNs are, how they work, and how to apply them to other datasets using the freely available library Caffe and supplemental code that we provide.https://arxiv.org/abs/1702.00583Published versio
    • …
    corecore