2,096 research outputs found

    Gauge Field Optics with Anisotropic Media

    Full text link
    By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.Comment: 10 pages, 4 figure

    Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves

    Full text link
    We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.Comment: 17 pages, 12 figure

    Actively controlling the topological transition of dispersion based on electrically controllable metamaterials

    Full text link
    Topological transition of the iso-frequency contour (IFC) from a closed ellipsoid to an open hyperboloid, will provide unique capabilities for controlling the propagation of light. However, the ability to actively tune these effects remains elusive and the related experimental observations are highly desirable. Here, tunable electric IFC in periodic structure which is composed of graphene/dielectric multilayers is investigated by tuning the chemical potential of graphene layer. Specially, we present the actively controlled transportation in two kinds of anisotropic zero-index media containing PEC/PMC impurities. At last, by adding variable capacitance diodes into two-dimensional transmission-line system, we present the experimental demonstration of the actively controlled magnetic topological transition of dispersion based on electrically controllable metamaterials. With the increase of voltage, we measure the different emission patterns from a point source inside the structure and observe the phase-transition process of IFCs. The realization of actively tuned topological transition will opens up a new avenue in the dynamical control of metamaterials.Comment: 21 pages,8 figure
    • …
    corecore