65,492 research outputs found

    Potential mechanical loss mechanisms in bulk materials for future gravitational wave detectors

    Full text link
    Low mechanical loss materials are needed to further decrease thermal noise in upcoming gravitational wave detectors. We present an analysis of the contribution of Akhieser and thermoelastic damping on the experimental results of resonant mechanical loss measurements. The combination of both processes allows the fit of the experimental data of quartz in the low temperature region (10 K to 25 K). A fully anisotropic numerical calculation over a wide temperature range (10 K to 300 K) reveals, that thermoelastic damping is not a dominant noise source in bulk silicon samples. The anisotropic numerical calculation is sucessfully applied to the estimate of thermoelastic noise of an advanced LIGO sized silicon test mass.Comment: 7 pages, 3 figures, submitted to Journal of Physics: Conference Series (AMALDI8

    Anisotropic Stark Effect and Electric-Field Noise Suppression for Phosphorus Donor Qubits in Silicon

    Full text link
    We report the use of novel, capacitively terminated coplanar waveguide (CPW) resonators to measure the quadratic Stark shift of phosphorus donor qubits in Si. We confirm that valley repopulation leads to an anisotropic spin-orbit Stark shift depending on electric and magnetic field orientations relative to the Si crystal. By measuring the linear Stark effect, we estimate the effective electric field due to strain in our samples. We show that in the presence of this strain, electric-field sources of decoherence can be non-negligible. Using our measured values for the Stark shift, we predict magnetic fields for which the spin-orbit Stark effect cancels the hyperfine Stark effect, suppressing decoherence from electric-field noise. We discuss the limitations of these noise-suppression points due to random distributions of strain and propose a method for overcoming them

    Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings

    Full text link
    We report on thermal noise from the internal friction of dielectric coatings made from alternating layers of Ta2O5 and SiO2 deposited on fused silica substrates. We present calculations of the thermal noise in gravitational wave interferometers due to optical coatings, when the material properties of the coating are different from those of the substrate and the mechanical loss angle in the coating is anisotropic. The loss angle in the coatings for strains parallel to the substrate surface was determined from ringdown experiments. We measured the mechanical quality factor of three fused silica samples with coatings deposited on them. The loss angle of the coating material for strains parallel to the coated surface was found to be (4.2 +- 0.3)*10^(-4) for coatings deposited on commercially polished slides and (1.0 +- 0.3)*10^{-4} for a coating deposited on a superpolished disk. Using these numbers, we estimate the effect of coatings on thermal noise in the initial LIGO and advanced LIGO interferometers. We also find that the corresponding prediction for thermal noise in the 40 m LIGO prototype at Caltech is consistent with the noise data. These results are complemented by results for a different type of coating, presented in a companion paper.Comment: Submitted to LSC (internal) review Sept. 20, 2001. To be submitted to Phys. Lett.
    corecore