15 research outputs found

    Quantifying Performance of Bipedal Standing with Multi-channel EMG

    Full text link
    Spinal cord stimulation has enabled humans with motor complete spinal cord injury (SCI) to independently stand and recover some lost autonomic function. Quantifying the quality of bipedal standing under spinal stimulation is important for spinal rehabilitation therapies and for new strategies that seek to combine spinal stimulation and rehabilitative robots (such as exoskeletons) in real time feedback. To study the potential for automated electromyography (EMG) analysis in SCI, we evaluated the standing quality of paralyzed patients undergoing electrical spinal cord stimulation using both video and multi-channel surface EMG recordings during spinal stimulation therapy sessions. The quality of standing under different stimulation settings was quantified manually by experienced clinicians. By correlating features of the recorded EMG activity with the expert evaluations, we show that multi-channel EMG recording can provide accurate, fast, and robust estimation for the quality of bipedal standing in spinally stimulated SCI patients. Moreover, our analysis shows that the total number of EMG channels needed to effectively predict standing quality can be reduced while maintaining high estimation accuracy, which provides more flexibility for rehabilitation robotic systems to incorporate EMG recordings

    The Stretch-Engine: A Method for Creating Exaggeration in Animation Through Squash and Stretch

    Get PDF
    Animators exaggerate character motion to emphasize personality and actions. Exaggeration is expressed by pushing a character’s pose, changing the action’s timing, or by changing a character’s form. This last method, referred to as squash and stretch, creates the most noticeable change in exaggeration. However, without practice, squash and stretch can adversely affect the animation. This work introduces a method to create exaggeration in motion by focusing solely on squash and stretch to control changes in a character’s form. It does this by displaying a limbs' path of motion and altering the shape of that path to create a change in the limb’s form. This paper provides information on tools that exist to create animation and exaggeration, then discusses the functionality and effectiveness of these tools and how they influenced the design of the Stretch-Engine. The Stretch-Engine is a prototype tool developed to demonstrate this approach and is designed to be integrated into an existing animation software, Maya. The Stretch-Engine contains a bipedal-humanoid rig with controls necessary for animation and the ability to squash and stretch. It can be accessed through a user interface that allows the animator to control squash and stretch by changing the shape of generated paths of motion. This method is then evaluated by comparing animations of realistic motion to versions created with the Stretch-Engine. These stretched versions displayed exaggerated results for their realistic counterparts, creating similar effects to Looney Tunes animation. This method fits within the animator’s workflow and helps new artists visualize and control squash and stretch to create exaggeration

    Animating Human Lower Limbs Using Contact-Invariant Optimization

    No full text
    We present a trajectory optimization approach to animating human activities that are driven by the lower body. Our approach is based on contact-invariant optimization. We develop a simplified and generalized formulation of contact-invariant optimization that enables continuous optimization over contact timings. This formulation is applied to a fully physical humanoid model whose lower limbs are actuated by musculotendon units. Our approach does not rely on prior motion data or on task-specific controllers. Motion is synthesized from first principles, given only a detailed physical model of the body and spacetime constraints. We demonstrate the approach on a variety of activities, such as walking, running, jumping, and kicking. Our approach produces walking motions that quantitatively match ground-truth data, and predicts aspects of human gait initiation, incline walking, and locomotion in reduced gravity

    Animating Human Lower Limbs Using Contact-Invariant Optimization

    No full text
    We present a trajectory optimization approach to animating human activities that are driven by the lower body. Our approach is based on contact-invariant optimization. We develop a simplified and generalized formulation of contact-invariant optimization that enables continuous optimization over contact timings. This formulation is applied to a fully physical humanoid model whose lower limbs are actuated by musculotendon units. Our approach does not rely on prior motion data or on task-specific controllers. Motion is synthesized from first principles, given only a detailed physical model of the body and spacetime constraints. We demonstrate the approach on a variety of activities, such as walking, running, jumping, and kicking. Our approach produces walking motions that quantitatively match ground-truth data, and predicts aspects of human gait initiation, incline walking, and locomotion in reduced gravity

    The Stretch-Engine: A Method for Creating Exaggeration in Animation Through Squash and Stretch

    Get PDF
    Animators exaggerate character motion to emphasize personality and actions. Exaggeration is expressed by pushing a character’s pose, changing the action’s timing, or by changing a character’s form. This last method, referred to as squash and stretch, creates the most noticeable change in exaggeration. However, without practice, squash and stretch can adversely affect the animation. This work introduces a method to create exaggeration in motion by focusing solely on squash and stretch to control changes in a character’s form. It does this by displaying a limbs' path of motion and altering the shape of that path to create a change in the limb’s form. This paper provides information on tools that exist to create animation and exaggeration, then discusses the functionality and effectiveness of these tools and how they influenced the design of the Stretch-Engine. The Stretch-Engine is a prototype tool developed to demonstrate this approach and is designed to be integrated into an existing animation software, Maya. The Stretch-Engine contains a bipedal-humanoid rig with controls necessary for animation and the ability to squash and stretch. It can be accessed through a user interface that allows the animator to control squash and stretch by changing the shape of generated paths of motion. This method is then evaluated by comparing animations of realistic motion to versions created with the Stretch-Engine. These stretched versions displayed exaggerated results for their realistic counterparts, creating similar effects to Looney Tunes animation. This method fits within the animator’s workflow and helps new artists visualize and control squash and stretch to create exaggeration
    corecore