316,593 research outputs found

    Transient receptor potential melastatin 7 cation channel kinase new player in angiotensin II–induced hypertension

    Get PDF
    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg2+)/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase–deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg2+ was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II–infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule–1 expression was increased in Ang II–infused TRPM7 kinase–deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II–treated groups. In TRPM7 kinase–deficient mice, Ang II–induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II–induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II–induced hypertension and associated vascular and target organ damage

    Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodeling

    Get PDF
    The renin angiotensin system (RAS) is integral to cardiovascular physiology, however, dysregulation of this system largely contributes to the pathophysiology of cardiovascular disease (CVD). It is well established that angiotensin II (Ang II), the main effector of the RAS, engages the angiotensin type 1 receptor and promotes cell growth, proliferation, migration and oxidative stress, all processes which contribute to remodeling of the heart and vasculature, ultimately leading to the development and progression of various CVDs including heart failure and atherosclerosis. The counter-regulatory axis of the RAS, which is centered on the actions of angiotensin converting enzyme 2 (ACE2) and the resultant production of angiotensin-(1-7) (Ang-(1-7) from Ang II, antagonizes the actions of Ang II via the receptor Mas, thereby providing a protective role in CVD. More recently, another ACE2 metabolite, Ang-(1-9), has been reported to be a biologically active peptide within the counter-regulatory axis of the RAS. This review will discuss the role of the counter-regulatory RAS peptides, Ang-(1-7) and Ang-(1-9) in the cardiovascular system, with a focus on their effects in remodeling of the heart and vasculature

    Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy.

    Get PDF
    The renin-angiotensin (Ang) system is important during placental development. Dysregulation of the renin-Ang system is important in preeclampsia (PE). Female rats transgenic for the human angiotensinogen gene crossed with males transgenic for the human renin gene develop the PE syndrome, whereas those of the opposite cross do not. We used this model to study the role of Ang II in trophoblast invasion, which is shallow in human PE but deeper in this model. We investigated the following groups: PE rats, opposite-cross rats, Ang II–infused rats (1000 ng/kg per day), and control rats. Ang II infusion increased only circulating Ang II levels (267.82 pg/mL), opposite cross influenced only uteroplacental Ang II (13.52 fmol/mg of protein), and PE increased both circulating (251.09 pg/mL) and uteroplacental (19.24 fmol/mg of protein) Ang II. Blood pressure and albuminuria occurred in the models with high circulating Ang II but not in the other models. Trophoblast invasion increased in PE and opposite-cross rats but not in Ang II–infused rats. Correspondingly, uterine artery resistance index increased in Ang II–infused rats but decreased in PE rats. We then studied human trophoblasts and villous explants from first-trimester pregnancies with time-lapse microscopy. Local Ang II dose-dependently increased migration by 75%, invasion by 58%, and motility by 282%. The data suggest that local tissue Ang II stimulates trophoblast invasion in vivo in the rat and in vitro in human cells, a hitherto fore unrecognized function. Conceivably, upregulation of tissue Ang II in the maternal part of the placenta represents an important growth factor for trophoblast invasion and migration

    Angiotensinergic innervation of rat and human mesenteric resistant blood vessels

    Get PDF
    In contrast to the current believe that angiotensin II (Ang II) only interacts with the sympathetic nervous system (SNS) as a circulating hormone, we document here the existence of an endogenous renin-angiotensin system (RAS) in the sympathetic coeliac ganglion and the angiotensinergic innervation with mesenteric resistant blood vessels. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglion and may act as an endogenous neurotransmitter locally on the mesenteric resistant blood vessels

    c-Src inhibition improves cardiovascular function but not remodeling or fibrosis in Ang II-induced hypertension

    Get PDF
    c-Src plays an important role in angiotensin II (Ang II) signaling. Whether this member of the Src family kinases is involved in the development of Ang II–induced hypertension and associated cardiovascular damage in vivo remains unknown. Here, we studied Ang II–infused (400 ng/kg/min) mice in which c-Src was partially deleted (c-Src+/−) and in wild-type (WT, c-Src+/+) mice treated with a c-Src inhibitor (CGP077675; 25 mg/kg/d). Ang II increased blood pressure and induced endothelial dysfunction in WT mice, responses that were ameliorated in c-Src+/− and CGP077675-treated mice. Vascular wall thickness and cross-sectional area were similarly increased by Ang II in WT and c-Src+/− mice. CGP077675 further increased cross-sectional area in hypertensive mice. Cardiac dysfunction (ejection fraction and fractional shortening) in Ang II–infused WT mice was normalized in c-Src+/− mice. Increased oxidative stress (plasma thiobarbituric acid–reactive substances, hydrogen peroxide, and vascular superoxide generation) in Ang II–infused WT mice was attenuated in c-Src–deficient and CGP077675-treated mice. Hyperactivation of vascular c-Src, ERK1/2 (extracellular signal–regulated kinase 1/2), and JNK (c-Jun N-terminal kinase) in hypertensive mice was normalized in CGP077675-treated and c-Src+/− mice. Vascular fibronectin was increased by Ang II in all groups and further augmented by CGP077675. Cardiac fibrosis and inflammation induced by Ang II were amplified in c-Src+/− and CGP-treated mice. Our data indicate that although c-Src downregulation attenuates development of hypertension, improves endothelial and cardiac function, reduces oxidative stress, and normalizes vascular signaling, it has little beneficial effect on fibrosis. These findings suggest a divergent role for c-Src in Ang II–dependent hypertension, where c-Src may be more important in regulating redox-sensitive cardiac and vascular function than fibrosis and remodeling

    Mass-spectrometric identification of a novel angiotensin peptide in human plasma

    Get PDF
    Objective— Angiotensin peptides play a central role in cardiovascular physiology and pathology. Among these peptides, angiotensin II (Ang II) has been investigated most intensively. However, further angiotensin peptides such as Ang 1-7, Ang III, and Ang IV also contribute to vascular regulation, and may elicit additional, different, or even opposite effects to Ang II. Here, we describe a novel Ang II-related, strong vasoconstrictive substance in plasma from healthy humans and end-stage renal failure patients. Methods and Results— Chromatographic purification and structural analysis by matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight (MALDI-TOF/TOF) revealed an angiotensin octapeptide with the sequence Ala-Arg-Val-Tyr-Ile-His-Pro-Phe, which differs from Ang II in Ala1 instead of Asp1. Des[Asp1]-[Ala1]-Ang II, in the following named Angiotensin A (Ang A), is most likely generated enzymatically. In the presence of mononuclear leukocytes, Ang II is converted to Ang A by decarboxylation of Asp1. Ang A has the same affinity to the AT1 receptor as Ang II, but a higher affinity to the AT2 receptor. In the isolated perfused rat kidney, Ang A revealed a smaller vasoconstrictive effect than Ang II, which was not modified in the presence of the AT2 receptor antagonist PD 123319, suggesting a lower intrinsic activity at the AT1 receptor. Ang II and Ang A concentrations in plasma of healthy subjects and end-stage renal failure patients were determined by matrix-assisted laser desorption/ionisation mass-analysis, because conventional enzyme immunoassay for Ang II quantification did not distinguish between Ang II and Ang A. In healthy subjects, Ang A concentrations were less than 20% of the Ang II concentrations, but the ratio Ang A / Ang II was higher in end-stage renal failure patients. Conclusion— Ang A is a novel human strong vasoconstrictive angiotensin-derived peptide, most likely generated by enzymatic transformation through mononuclear leukocyte-derived aspartate decarboxylase. Plasma Ang A concentration is increased in end-stage renal failure. Because of its stronger agonism at the AT2 receptor, Ang A may modulate the harmful effects of Ang II. In this study, a new angiotensin-peptide of human plasma is described, which is characterized as a strong AT2-receptor agonist

    Effects of Aging and Hypertension on Plasma Angiotensin II and Platelet Angiotensin II Receptor Density

    Get PDF
    Plasma renin activity (PRA) declines with age in normal individuals, but the effect of age on plasma angiotensin II (ANG II) is less clear. A decline in plasma ANG II with age could result in altered platelet ANG II receptor density since plasma hormone levels influence their target organ receptors. To investigate this possibility, PRA, plasma ANG II, and platelet ANG II receptor density were examined in 17 young, 12 middle-aged, and 14 elderly healthy normotensive volunteers. To assess whether hypertension altered receptor density, these variables were also examined in 23 hypertensive patients. In normotensives, there was a negative correlation between age and PRA (r = — 0.43, P < .05), no significant change in basal plasma ANG II with age, and a weak positive correlation between age and ANG II receptor density (r = 0.34, P < .05). Multiple regression analysis revealed that the relationship between age and ANG II receptor density was independent of the associated rise in mean arterial arterial pressure with age (P < .05). Platelet ANG II receptor density was not significantly related to PRA or plasma ANG II. ANG II receptor affinity did not change with age. Neither PRA nor ANG II receptor density or affinity differed between hypertensives and normotensives of similar mean age, but plasma ANG II was significantly lower in hypertensives compared with normotensives. We concluded that aging is associated with a decline in supine PRA. The small decrease in plasma ANG II was not significant. Platelet ANG II receptor density increased with age primarily due to a small group of elderly subjects with elevated receptor density. There was no change in ANG II receptor density or affinity in hypertensives despite apparently lower plasma ANG II in these patients. Am J Hypertens 1992;5:687-69

    The orphan receptor GPR35 contributes to angiotensin II–induced hypertension and cardiac dysfunction in mice

    Get PDF
    BACKGROUND: The orphan receptor G protein–coupled receptor 35 (GPR35) has been associated with a range of diseases, including cancer, inflammatory bowel disease, diabetes, hypertension, and heart failure. To assess the potential for GPR35 as a therapeutic target in cardiovascular disease, this study investigated the cardiovascular phenotype of a GPR35 knockout mouse under both basal conditions and following pathophysiological stimulation. METHODS: Blood pressure was monitored in male wild-type and GPR35 knockout mice over 7–14 days using implantable telemetry. Cardiac function and dimensions were assessed using echocardiography, and cardiomyocyte morphology evaluated histologically. Two weeks of angiotensin II (Ang II) infusion was used to investigate the effects of GPR35 deficiency under pathophysiological conditions. Gpr35 messenger RNA expression in cardiovascular tissues was assessed using quantitative polymerase chain reaction. RESULTS: There were no significant differences in blood pressure, cardiac function, or cardiomyocyte morphology in GPR35 knockout mice compared with wild-type mice. Following Ang II infusion, GPR35 knockout mice were protected from significant increases in systolic, diastolic, and mean arterial blood pressure or impaired left ventricular systolic function, in contrast to wild-type mice. There were no significant differences in Gpr35 messenger RNA expression in heart, kidney, and aorta following Ang II infusion in wild-type mice. CONCLUSIONS: Although GPR35 does not appear to influence basal cardiovascular regulation, these findings demonstrate that it plays an important pathological role in the development of Ang II–induced hypertension and impaired cardiac function. This suggests that GPR35 is a potential novel drug target for therapeutic intervention in hypertension

    Increased circulating ANG II and TNF-α represents important risk factors in obese Saudi adults with hypertension irrespective of diabetic status and BMI

    Get PDF
    Central adiposity is a significant determinant of obesity-related hypertension risk, which may arise due to the pathogenic inflammatory nature of the abdominal fat depot. However, the influence of pro-inflammatory adipokines on blood pressure in the obese hypertensive phenotype has not been well established in Saudi subjects. As such, our study investigated whether inflammatory factors may represent useful biomarkers to delineate hypertension risk in a Saudi cohort with and without hypertension and/or diabetes mellitus type 2 (DMT2). Subjects were subdivided into four groups: healthy lean controls (age: 47.9±5.1 yr; BMI: 22.9±2.1 Kg/m2), non-hypertensive obese (age: 46.1±5.0 yr; BMI: 33.7±4.2 Kg/m2), hypertensive obese (age: 48.6±6.1 yr; BMI: 36.5±7.7 Kg/m2) and hypertensive obese with DMT2 (age: 50.8±6.0 yr; BMI: 35.3±6.7 Kg/m2). Anthropometric data were collected from all subjects and fasting blood samples were utilized for biochemical analysis. Serum angiotensin II (ANG II) levels were elevated in hypertensive obese (p<0.05) and hypertensive obese with DMT2 (p<0.001) compared with normotensive controls. Systolic blood pressure was positively associated with BMI (p<0.001), glucose (p<0.001), insulin (p<0.05), HOMA-IR (p<0.001), leptin (p<0.01), TNF-α (p<0.001) and ANG II (p<0.05). Associations between ANG II and TNF-α with systolic blood pressure remained significant after controlling for BMI. Additionally CRP (p<0.05), leptin (p<0.001) and leptin/adiponectin ratio (p<0.001) were also significantly associated with the hypertension phenotype. In conclusion our data suggests that circulating pro-inflammatory adipokines, particularly ANG II and, TNF-α, represent important factors associated with a hypertension phenotype and may directly contribute to predicting and exacerbating hypertension risk

    Angiotensin-(1-7) increases osmotic water permeability in isolated toad skin

    Get PDF
    Angiotensin-(1-7) (Ang-(1-7)) increased osmotic water permeability in the isolated toad skin, a tissue with functional properties similar to those of the distal mammalian nephron. Concentrations of 0.1 to 10 μM were effective, with a peak at 20 min. This effect was similar in magnitude to that of frog skin angiotensin II (Ang II) and oxytocin but lower than that of human Ang II and arginine-vasotocin. The AT2 angiotensin receptor antagonist PD 123319 (1.0 μM) fully inhibited the response to 0.1 μM Ang-(1-7) but had no effect on the response to Ang II at the same concentration. The specific receptor antagonist of Ang-(1-7), A-779, was ineffective in blocking the response to Ang-(1-7) and to frog skin Ang II. The AT1 receptor subtype antagonist losartan, which blocked the response to frog skin Ang II, was ineffective in blocking the response to Ang-(1-7). The present results support the view of an antidiuretic action of Ang-(1-7) in the mammalian nephron.Fil: Santos, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Jerez, Susana Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Peral, Maria de Los Angeles. Universidad Nacional de Tucumán. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Coviello, Alfredo. Universidad Nacional de Tucumán. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentin
    corecore