45 research outputs found

    Generative Interpretation of Medical Images

    Get PDF

    Analysis Of the Performance Of Iodinated Contrast X-Ray Attenuator Under Physiologically Relevant Conditions

    Get PDF
    X-ray is a radiological tool utilized in healthcare institutions around the world to diagnose abnormalities such as bone fractures or the presence of foreign material within patients. The ability for healthcare providers to properly diagnose a problem is improved with advancements in the quality of radiological images. One way to improve image quality is to optimize the contrast range within a single image created by different attenuating characteristics in various types of tissue. In this study, I used a proof-of-concept prototype model of an x-ray attenuation system and an experimental protocol to examine its capacity to equalize x-ray beam signal values. A scout object consisting of different thicknesses of aluminum with the thickest section representing the most attenuated section and the target for equalization was used as a model of different types of tissue in a patient. The performance of the device and procedure was studied at various x-ray power levels and base acrylic thicknesses to represent anatomically relevant conditions. The different base acrylic thicknesses were used to represent standard attenuation in different sized patients. A statistical analysis was conducted using an unpaired t-test on the data results to identify whether the results are statistically significant and represent an improvement in image quality. The calibration equations developed to calculate the amount of iodinated contrast necessary at certain conditions were tested at intermediate levels to test performance under other conditions. The unpaired t-test was also conducted on these results. The analysis showed the exposure levels in each column were optimized to reduce the dynamic range of signal values

    Quantitative analysis of infrared contrast enhancement algorithms

    Full text link

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    Quantitative analysis of infrared contrast enhancement algorithms

    Get PDF
    This thesis examines a quantitative analysis of infrared contrast enhancement algorithms found in literature and developed by the author. Four algorithms were studied, three of which were found in literature and one developed by the author: tail-less plateau equalization (TPE), adaptive plateau equalization (APE), the method according to Aare Mallo (MEAM), and infrared multi-scale retinex (IMSR). Engineering code was developed for each algorithm. From this engineering code, a rate of growth analysis was conducted to determine each algorithm’s computational load. From the analysis, it was found that all algorithms with the exception of IMSR have a desirable linear nature. Once the rate of growth analysis was complete, sample infrared imagery was collected. Three scenes were collected for experimentation: a low-to-high thermal variation scene, a low-to-mid thermal variation scene, and a natural scene. After collecting sample imagery and processing it with the engineering code, a paired comparison psychophysical trial was executed using local firefighters, common users of the infrared imaging system. From this trial, two metrics were formed: an average rank and an interval scale. From analysis of both metrics plus an analysis of the rate of growth, MEAM was declared to be the best algorithm overall

    ORGAN MOTION AND IMAGE GUIDANCE IN RADIATION THERAPY

    Get PDF
    Organ motion and inaccurate patient positioning may compromise radiation therapy outcome. With the aid of image guidance, it is possible to allow for a more accurate organ motion and motion control study, which could lead to the reduction of irradiated healthy tissues and possible dose escalation to the target volume to achieve better treatment results. The studies on the organ motion and image guidance were divided into the following four sections. The first, the interfractional setup uncertainties from day-to-day treatment and intrafractional internal organ motion within the daily treatment from five different anatomic sites were studied with Helical TomoTherapy unit. The pre-treatment mega voltage computed tomography (MVCT) provided the real-time tumor and organ shift coordinates, and can be used to improve the accuracy of patient positioning. The interfractional system errors and random errors were analyzed and the suggested margins for HN, brain, prostate, abdomen and lung were derived. The second, lung stereotactic body radiation therapy using the MIDCO BodyLoc whole body stereotactic localizer combined with TomoTherapy MVCT image guidance were investigated for the possible target and organ motion reduction. The comparison of 3D displacement with and without BodyLoc immobilization showed that, suppression of internal organ motion was improved by using BodyLoc in this study. The third, respiration related tumor motion was accurately studied with the four dimensional computed tomography (4DCT). Deformable registration between different breathing phases was performed to estimate the motion trajectory for lung tumor. Optimization is performed by minimizing the mean squared difference in intensity, and is implemented with a multi-resolution, gradient descent procedure. The fourth, lung tumor mobility and dosimetric benefits were compared with different PTV obtained from 3DCT and 4DCT. The results illustrated that the PTV3D not only included excess normal tissues but also might result in missed target tissue. The normal tissue complication probability (NTCP) from 4D plan was statistically significant smaller than 3D plan for both ipsilateral lung and heart

    Infective/inflammatory disorders

    Get PDF
    corecore