18 research outputs found

    An Analysis of Mixed Initiative and Collaboration in Information-Seeking Dialogues

    Get PDF
    The ability to engage in mixed-initiative interaction is one of the core requirements for a conversational search system. How to achieve this is poorly understood. We propose a set of unsupervised metrics, termed ConversationShape, that highlights the role each of the conversation participants plays by comparing the distribution of vocabulary and utterance types. Using ConversationShape as a lens, we take a closer look at several conversational search datasets and compare them with other dialogue datasets to better understand the types of dialogue interaction they represent, either driven by the information seeker or the assistant. We discover that deviations from the ConversationShape of a human-human dialogue of the same type is predictive of the quality of a human-machine dialogue.Comment: SIGIR 2020 short conference pape

    BERT with History Answer Embedding for Conversational Question Answering

    Full text link
    Conversational search is an emerging topic in the information retrieval community. One of the major challenges to multi-turn conversational search is to model the conversation history to answer the current question. Existing methods either prepend history turns to the current question or use complicated attention mechanisms to model the history. We propose a conceptually simple yet highly effective approach referred to as history answer embedding. It enables seamless integration of conversation history into a conversational question answering (ConvQA) model built on BERT (Bidirectional Encoder Representations from Transformers). We first explain our view that ConvQA is a simplified but concrete setting of conversational search, and then we provide a general framework to solve ConvQA. We further demonstrate the effectiveness of our approach under this framework. Finally, we analyze the impact of different numbers of history turns under different settings to provide new insights into conversation history modeling in ConvQA.Comment: Accepted to SIGIR 2019 as a short pape

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201

    Open-Retrieval Conversational Question Answering

    Full text link
    Conversational search is one of the ultimate goals of information retrieval. Recent research approaches conversational search by simplified settings of response ranking and conversational question answering, where an answer is either selected from a given candidate set or extracted from a given passage. These simplifications neglect the fundamental role of retrieval in conversational search. To address this limitation, we introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers, as a further step towards building functional conversational search systems. We create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers. Our extensive experiments on OR-QuAC demonstrate that a learnable retriever is crucial for ORConvQA. We further show that our system can make a substantial improvement when we enable history modeling in all system components. Moreover, we show that the reranker component contributes to the model performance by providing a regularization effect. Finally, further in-depth analyses are performed to provide new insights into ORConvQA.Comment: Accepted to SIGIR'2

    Learning to Expand: Reinforced Pseudo-relevance Feedback Selection for Information-seeking Conversations

    Full text link
    Intelligent personal assistant systems for information-seeking conversations are increasingly popular in real-world applications, especially for e-commerce companies. With the development of research in such conversation systems, the pseudo-relevance feedback (PRF) has demonstrated its effectiveness in incorporating relevance signals from external documents. However, the existing studies are either based on heuristic rules or require heavy manual labeling. In this work, we treat the PRF selection as a learning task and proposed a reinforced learning based method that can be trained in an end-to-end manner without any human annotations. More specifically, we proposed a reinforced selector to extract useful PRF terms to enhance response candidates and a BERT based response ranker to rank the PRF-enhanced responses. The performance of the ranker serves as rewards to guide the selector to extract useful PRF terms, and thus boost the task performance. Extensive experiments on both standard benchmark and commercial datasets show the superiority of our reinforced PRF term selector compared with other potential soft or hard selection methods. Both qualitative case studies and quantitative analysis show that our model can not only select meaningful PRF terms to expand response candidates but also achieve the best results compared with all the baseline methods on a variety of evaluation metrics. We have also deployed our method on online production in an e-commerce company, which shows a significant improvement over the existing online ranking system

    Attentive History Selection for Conversational Question Answering

    Full text link
    Conversational question answering (ConvQA) is a simplified but concrete setting of conversational search. One of its major challenges is to leverage the conversation history to understand and answer the current question. In this work, we propose a novel solution for ConvQA that involves three aspects. First, we propose a positional history answer embedding method to encode conversation history with position information using BERT in a natural way. BERT is a powerful technique for text representation. Second, we design a history attention mechanism (HAM) to conduct a "soft selection" for conversation histories. This method attends to history turns with different weights based on how helpful they are on answering the current question. Third, in addition to handling conversation history, we take advantage of multi-task learning (MTL) to do answer prediction along with another essential conversation task (dialog act prediction) using a uniform model architecture. MTL is able to learn more expressive and generic representations to improve the performance of ConvQA. We demonstrate the effectiveness of our model with extensive experimental evaluations on QuAC, a large-scale ConvQA dataset. We show that position information plays an important role in conversation history modeling. We also visualize the history attention and provide new insights into conversation history understanding.Comment: Accepted to CIKM 201
    corecore