1,280 research outputs found

    On the effect of blockage objects in dense MIMO SWIPT networks

    Full text link
    Simultaneous information and power transfer (SWIPT) is characterised by the ambiguous role of multi-user interference. In short, the beneficial effect of multi-user interference on RF energy harvesting is obtained at the price of a reduced link capacity, thus originating nontrivial trade-offs between the achievable information rate and the harvestable energy. Arguably, in indoor environments, this trade-off might be affected by the propagation loss due to blockage objects like walls. Hence, a couple of fundamental questions arise. How much must the network elements be densified to counteract the blockage attenuation? Is blockage always detrimental on the achievable rate-energy trade-off? In this paper, we analyse the performance of an indoor multiple-input multiple-output (MIMO) SWIPT-enabled network in the attempt to shed a light of those questions. The effects of the obstacles are examined with the help of a stochastic approach in which energy transmitters (also referred to as power heads) are located by using a Poisson Point Process and walls are generated through a Manhattan Poisson Line Process. The stochastic behaviour of the signal attenuation and the multi-user interference is studied to obtain the Joint Complementary Cumulative Distribution Function (J-CCDF) of information rate and harvested power. Theoretical results are validated through Monte Carlo simulations. Eventually, the rate-energy trade-off is presented as a function of the frequency of walls to emphasise the cross-dependences between the deployment of the network elements and the topology of the venue

    60 GHz Blockage Study Using Phased Arrays

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential for enormous capacity wireless links. However, designing robust communication systems at these frequencies requires that we understand the channel dynamics over both time and space: mmWave signals are extremely vulnerable to blocking and the channel can thus rapidly appear and disappear with small movement of obstacles and reflectors. In rich scattering environments, different paths may experience different blocking trajectories and understanding these multi-path blocking dynamics is essential for developing and assessing beamforming and beam-tracking algorithms. This paper presents the design and experimental results of a novel measurement system which uses phased arrays to perform mmWave dynamic channel measurements. Specifically, human blockage and its effects across multiple paths are investigated with only several microseconds between successive measurements. From these measurements we develop a modeling technique which uses low-rank tensor factorization to separate the available paths so that their joint statistics can be understood.Comment: To appear in the Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 201

    On the Temporal Effects of Mobile Blockers in Urban Millimeter-Wave Cellular Scenarios

    Get PDF
    Millimeter-wave (mmWave) propagation is known to be severely affected by the blockage of the line-of-sight (LoS) path. In contrast to microwave systems, at shorter mmWave wavelengths such blockage can be caused by human bodies, where their mobility within environment makes wireless channel alternate between the blocked and non-blocked LoS states. Following the recent 3GPP requirements on modeling the dynamic blockage as well as the temporal consistency of the channel at mmWave frequencies, in this paper a new model for predicting the state of a user in the presence of mobile blockers for representative 3GPP scenarios is developed: urban micro cell (UMi) street canyon and park/stadium/square. It is demonstrated that the blockage effects produce an alternating renewal process with exponentially distributed non-blocked intervals, and blocked durations that follow the general distribution. The following metrics are derived (i) the mean and the fraction of time spent in blocked/non-blocked state, (ii) the residual blocked/non-blocked time, and (iii) the time-dependent conditional probability of having blockage/no blockage at time t1 given that there was blockage/no blockage at time t0. The latter is a function of the arrival rate (intensity), width, and height of moving blockers, distance to the mmWave access point (AP), as well as the heights of the AP and the user device. The proposed model can be used for system-level characterization of mmWave cellular communication systems. For example, the optimal height and the maximum coverage radius of the mmWave APs are derived, while satisfying the required mean data rate constraint. The system-level simulations corroborate that the use of the proposed method considerably reduces the modeling complexity.Comment: Accepted, IEEE Transactions on Vehicular Technolog
    corecore