953 research outputs found

    Technological advancements in the analysis of human motion and posture management through digital devices

    Get PDF
    Technological development of motion and posture analyses is rapidly progressing, especially in rehabilitation settings and sport biomechanics. Consequently, clear discrimination among different measurement systems is required to diversify their use as needed. This review aims to resume the currently used motion and posture analysis systems, clarify and suggest the appropriate approaches suitable for specific cases or contexts. The currently gold standard systems of motion analysis, widely used in clinical settings, present several limitations related to marker placement or long procedure time. Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies, especially outside laboratories. Similarly, new posture analysis techniques are emerging, often driven by the need for fast and non-invasive methods to obtain high-precision results. These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies. The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient. Herein, these devices and their uses are described, providing researchers, clinicians, orthopedics, physical therapists, and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis, therapy, and prevention

    An investigation into the utility of wearable sensor derived biofeedback on the motor control of the lumbar spine

    Get PDF
    Lower back pain (LBP) is a disability that affects a large proportion of the population and treatment for this has been shifting towards a more individualized, patient-centered approach. There has been a recent uptake in the utilization and implementation of wearable sensors that can administer biofeedback in various industrial, clinical, and performance-based settings. The overall aim of this Master’s thesis was to investigate how wearable sensors can be used in a sensorimotor (re)training approach, including how sensory biofeedback from wearable sensors can be used to improve measures of spinal motor control and proprioception. Two complementary research studies were completed to address this overall aim. As a systematic review, Study #1 focused on addressing the lack of consensus surrounding wearable sensor derived biofeedback and spine motor control. The results of this review suggest that haptic/vibrotactile feedback is the most common and that it is administered in an instantaneous real-time manner within most experimental paradigms. Further, study #1 identified clear gaps within the research literature. Specifically, future research would benefit from more clarity regarding study design, and movement instructions, and explicit definitions of biofeedback parameters to enhance reproducibility. The aim of Study #2 was to assess the acute effects of wearable sensor-derived auditory biofeedback on gross lumbar proprioception. To assess this, participants completed a target repositioning protocol, followed by a training period where they were provided with auditory feedback for two of four targets based on a percentage of their lumbar ROM. Results suggest that mid-range targets benefitted most from the acute auditory feedback training. Further, individuals with poorer repositioning abilities in the pre-training assessment showed the greatest improvements from the auditory feedback training. This suggests that auditory biofeedback training may be an effective tool to improve proprioception in those with proprioceptive deficits. Collectively these complimentary research studies will improve the understanding surrounding the ecological utility of wearable sensor derived biofeedback in industrial, clinical, and performance settings to enhance to sensorimotor control of the lumbar region

    Assessing the Utility of a Video-Based Motion Capture Alternative in the Assessment of Lumbar Spine Planar Angular Joint Kinematics

    Get PDF
    Markerless motion capture is a novel technique to measure human movement kinematics. The purpose of this research is to evaluate the markerless algorithm, DeepLabCut (DLC) against a 3D motion capture system (Vicon Motion Systems Ltd., Oxford, UK) in the analysis of planar spine and elbow flexion-extension movement. Data were acquired concurrently from DLC and Vicon for all movements. A novel DLC model was trained using data derived from a subset of participants (training group). Accuracy and precision were assessed from data derived from the training group as well as in a new set of participants (testing group). Two-way SPM ANOVAs were used to detect significant differences between the training vs. testing sets, capture methods (Vicon vs. DLC), as well as potential higher order interaction effect between these independent variables in the estimation of flexion extension angles and variability. No significant differences were observed in any planar angles, nor were any higher order interactions observed between each motion capture modality and the training vs. testing datasets. Bland Altman plots were also generated to depict the mean bias and level of agreement between DLC and Vicon for both training, and testing datasets. Supplemental analyses, suggest that these results are partially affected by the alignment of each participant’s body segments with respect to each planar reference frame. This research suggests that DLC-derived planar kinematics of both the elbow and lumbar spine are of acceptable accuracy and precision when compared to conventional laboratory gold-standards (Vicon)

    Commercial and research-based wearable devices in spinal postural analysis: A systematic review

    Get PDF
    The widespread use of ubiquitous computing has led to people spending more time in front of screens, causing poor posture. The COVID-19 pandemic and the shift towards remote work have only worsened the situation, as many people are now working from home with inadequate ergonomics. Maintaining a healthy posture is crucial for both physical and mental health, and poor posture can result in spinal problems. Wearable systems have been developed to monitor posture and provide instant feedback. Their goal is to improve posture over time by using these devices. This article will review commercially available, and research-based wearable devices used to analyse posture. The potential of these devices in the healthcare industry, particularly in preventing, monitoring, and treating spinal and musculoskeletal conditions, will also be discussed. The findings indicate that current devices can accurately assess posture in clinical settings, but further research is needed to validate the long-term effectiveness of these technologies and to improve their practicality for commercial use
    corecore