7 research outputs found

    Exact Failure Frequency Calculations for Extended Systems

    Full text link
    This paper shows how the steady-state availability and failure frequency can be calculated in a single pass for very large systems, when the availability is expressed as a product of matrices. We apply the general procedure to kk-out-of-nn:G and linear consecutive kk-out-of-nn:F systems, and to a simple ladder network in which each edge and node may fail. We also give the associated generating functions when the components have identical availabilities and failure rates. For large systems, the failure rate of the whole system is asymptotically proportional to its size. This paves the way to ready-to-use formulae for various architectures, as well as proof that the differential operator approach to failure frequency calculations is very useful and straightforward

    Exact two-terminal reliability of some directed networks

    Full text link
    The calculation of network reliability in a probabilistic context has long been an issue of practical and academic importance. Conventional approaches (determination of bounds, sums of disjoint products algorithms, Monte Carlo evaluations, studies of the reliability polynomials, etc.) only provide approximations when the network's size increases, even when nodes do not fail and all edges have the same reliability p. We consider here a directed, generic graph of arbitrary size mimicking real-life long-haul communication networks, and give the exact, analytical solution for the two-terminal reliability. This solution involves a product of transfer matrices, in which individual reliabilities of edges and nodes are taken into account. The special case of identical edge and node reliabilities (p and rho, respectively) is addressed. We consider a case study based on a commonly-used configuration, and assess the influence of the edges being directed (or not) on various measures of network performance. While the two-terminal reliability, the failure frequency and the failure rate of the connection are quite similar, the locations of complex zeros of the two-terminal reliability polynomials exhibit strong differences, and various structure transitions at specific values of rho. The present work could be extended to provide a catalog of exactly solvable networks in terms of reliability, which could be useful as building blocks for new and improved bounds, as well as benchmarks, in the general case

    A memory efficient algorithm for network reliability

    Get PDF
    We combine the Augmented Ordered Binary Decision Diagram (OBDD-A) with the use of boundary sets to create a method for computing the exact K-terminal or all-terminal reliability of an undirected network with failed edges and perfect vertices. We present the results of implementing this algorithm and show that the execution time is comparable with the state of the art and the space requirement is greatly reduced. Indeed the space remains constant when networks increase in size but maintain their structure and maximum boundary set size; with the same amount of memory used for computing a 312 and a 31000 grid network

    Computing performability for wireless sensor networks

    Get PDF
    The performability of a wireless sensor network (WSN) can be measured using a range of metrics, including reliability (REL) and expected hop count (EHC). EHC assumes each link has a delay value of 1 and devices have no delay or vice versa, which is not necessarily appropriate for WSNs. This paper generalizes the EHC metric into an expected message delay (EMD) that permits arbitrary delay values for both links and devices. Further, it proposes a method based on Augmented Ordered Multivariate Decision Diagram (OMDD-A) that can be used to compute REL, EHC and EMD for WSN with both device and link failures. Simulation results on various networks show the benefits of the OMDD-A approach

    Exact solutions for the two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan

    Full text link
    The two- and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan have been calculated exactly for arbitrary size as well as arbitrary individual edge and node reliabilities, using transfer matrices of dimension four at most. While the all-terminal reliabilities of these graphs are identical, the special case of identical edge (pp) and node (ρ\rho) reliabilities shows that their two-terminal reliabilities are quite distinct, as demonstrated by their generating functions and the locations of the zeros of the reliability polynomials, which undergo structural transitions at ρ=1/2\rho = \displaystyle {1/2}
    corecore