3 research outputs found

    Analytical and Computational Modeling of Robotic Fish Propelled by Soft Actuation Material-based Active Joints", The

    Get PDF
    Abstract-Soft actuation materials, such as Ionic PolymerMetal Composites (IPMCs), are gaining increasing interest in robotic applications since they lead to compact and biomimetic designs. In this paper, we propose the use of soft actuation materials as active joints for propelling biomimetic robotic fish. An analytical model is developed to compute the thrust force generated by a two-link tail and the resulting moments in the active joints. The computed joint moments can be combined with internal dynamics of actuation materials to provide realistic kinematic constraints for the joints. Computational fluid dynamics (CFD) modeling is also adopted to examine the flow field, the produced thrust, and the bending moments in joints for the two-link tail. Good agreement is achieved between the analytical modeling and the CFD modeling, which points to a promising two-tier framework for the understanding and optimization of robotic fish with a multi-link tail. We also show that, comparing to a one-link bending tail, a two-link tail is able to produce much higher thrust and more versatile maneuvers, such as backward swimming

    3D hydrodynamic analysis of a biomimetic robot fish

    Full text link
    This paper presents a three-dimensional (3D) computational fluid dynamic simulation of a biomimetic robot fish. Fluent and user-defined function (UDF) is used to define the movement of the robot fish and the Dynamic Mesh is used to mimic the fish swimming in water. Hydrodynamic analysis is done in this paper too. The aim of this study is to get comparative data about hydrodynamic properties of those guidelines to improve the design, remote control and flexibility of the underwater robot fish

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it
    corecore