7,812 research outputs found

    The loss surface of deep linear networks viewed through the algebraic geometry lens

    Full text link
    By using the viewpoint of modern computational algebraic geometry, we explore properties of the optimization landscapes of the deep linear neural network models. After clarifying on the various definitions of "flat" minima, we show that the geometrically flat minima, which are merely artifacts of residual continuous symmetries of the deep linear networks, can be straightforwardly removed by a generalized L2L_2 regularization. Then, we establish upper bounds on the number of isolated stationary points of these networks with the help of algebraic geometry. Using these upper bounds and utilizing a numerical algebraic geometry method, we find all stationary points of modest depth and matrix size. We show that in the presence of the non-zero regularization, deep linear networks indeed possess local minima which are not the global minima. Our computational results clarify certain aspects of the loss surfaces of deep linear networks and provide novel insights.Comment: 16 pages (2-columns), 5 figure

    Accumulation Bit-Width Scaling For Ultra-Low Precision Training Of Deep Networks

    Full text link
    Efforts to reduce the numerical precision of computations in deep learning training have yielded systems that aggressively quantize weights and activations, yet employ wide high-precision accumulators for partial sums in inner-product operations to preserve the quality of convergence. The absence of any framework to analyze the precision requirements of partial sum accumulations results in conservative design choices. This imposes an upper-bound on the reduction of complexity of multiply-accumulate units. We present a statistical approach to analyze the impact of reduced accumulation precision on deep learning training. Observing that a bad choice for accumulation precision results in loss of information that manifests itself as a reduction in variance in an ensemble of partial sums, we derive a set of equations that relate this variance to the length of accumulation and the minimum number of bits needed for accumulation. We apply our analysis to three benchmark networks: CIFAR-10 ResNet 32, ImageNet ResNet 18 and ImageNet AlexNet. In each case, with accumulation precision set in accordance with our proposed equations, the networks successfully converge to the single precision floating-point baseline. We also show that reducing accumulation precision further degrades the quality of the trained network, proving that our equations produce tight bounds. Overall this analysis enables precise tailoring of computation hardware to the application, yielding area- and power-optimal systems.Comment: Published as a conference paper in ICLR 201

    Numerically Recovering the Critical Points of a Deep Linear Autoencoder

    Full text link
    Numerically locating the critical points of non-convex surfaces is a long-standing problem central to many fields. Recently, the loss surfaces of deep neural networks have been explored to gain insight into outstanding questions in optimization, generalization, and network architecture design. However, the degree to which recently-proposed methods for numerically recovering critical points actually do so has not been thoroughly evaluated. In this paper, we examine this issue in a case for which the ground truth is known: the deep linear autoencoder. We investigate two sub-problems associated with numerical critical point identification: first, because of large parameter counts, it is infeasible to find all of the critical points for contemporary neural networks, necessitating sampling approaches whose characteristics are poorly understood; second, the numerical tolerance for accurately identifying a critical point is unknown, and conservative tolerances are difficult to satisfy. We first identify connections between recently-proposed methods and well-understood methods in other fields, including chemical physics, economics, and algebraic geometry. We find that several methods work well at recovering certain information about loss surfaces, but fail to take an unbiased sample of critical points. Furthermore, numerical tolerance must be very strict to ensure that numerically-identified critical points have similar properties to true analytical critical points. We also identify a recently-published Newton method for optimization that outperforms previous methods as a critical point-finding algorithm. We expect our results will guide future attempts to numerically study critical points in large nonlinear neural networks

    Exploiting Errors for Efficiency: A Survey from Circuits to Algorithms

    Full text link
    When a computational task tolerates a relaxation of its specification or when an algorithm tolerates the effects of noise in its execution, hardware, programming languages, and system software can trade deviations from correct behavior for lower resource usage. We present, for the first time, a synthesis of research results on computing systems that only make as many errors as their users can tolerate, from across the disciplines of computer aided design of circuits, digital system design, computer architecture, programming languages, operating systems, and information theory. Rather than over-provisioning resources at each layer to avoid errors, it can be more efficient to exploit the masking of errors occurring at one layer which can prevent them from propagating to a higher layer. We survey tradeoffs for individual layers of computing systems from the circuit level to the operating system level and illustrate the potential benefits of end-to-end approaches using two illustrative examples. To tie together the survey, we present a consistent formalization of terminology, across the layers, which does not significantly deviate from the terminology traditionally used by research communities in their layer of focus.Comment: 35 page

    Understanding the Energy and Precision Requirements for Online Learning

    Full text link
    It is well-known that the precision of data, hyperparameters, and internal representations employed in learning systems directly impacts its energy, throughput, and latency. The precision requirements for the training algorithm are also important for systems that learn on-the-fly. Prior work has shown that the data and hyperparameters can be quantized heavily without incurring much penalty in classification accuracy when compared to floating point implementations. These works suffer from two key limitations. First, they assume uniform precision for the classifier and for the training algorithm and thus miss out on the opportunity to further reduce precision. Second, prior works are empirical studies. In this article, we overcome both these limitations by deriving analytical lower bounds on the precision requirements of the commonly employed stochastic gradient descent (SGD) on-line learning algorithm in the specific context of a support vector machine (SVM). Lower bounds on the data precision are derived in terms of the the desired classification accuracy and precision of the hyperparameters used in the classifier. Additionally, lower bounds on the hyperparameter precision in the SGD training algorithm are obtained. These bounds are validated using both synthetic and the UCI breast cancer dataset. Additionally, the impact of these precisions on the energy consumption of a fixed-point SVM with on-line training is studied.Comment: 14 pages, 5 figures 4 of which have 2 subfigure

    Adaptive Task Allocation for Mobile Edge Learning

    Full text link
    This paper aims to establish a new optimization paradigm for implementing realistic distributed learning algorithms, with performance guarantees, on wireless edge nodes with heterogeneous computing and communication capacities. We will refer to this new paradigm as `Mobile Edge Learning (MEL)'. The problem of dynamic task allocation for MEL is considered in this paper with the aim to maximize the learning accuracy, while guaranteeing that the total times of data distribution/aggregation over heterogeneous channels, and local computing iterations at the heterogeneous nodes, are bounded by a preset duration. The problem is first formulated as a quadratically-constrained integer linear problem. Being an NP-hard problem, the paper relaxes it into a non-convex problem over real variables. We thus proposed two solutions based on deriving analytical upper bounds of the optimal solution of this relaxed problem using Lagrangian analysis and KKT conditions, and the use of suggest-and-improve starting from equal batch allocation, respectively. The merits of these proposed solutions are exhibited by comparing their performances to both numerical approaches and the equal task allocation approach.Comment: 8 pages, 2 figures, submitted to IEEE WCNC Workshop 2019, Morocc

    Binary Classification from Positive-Confidence Data

    Full text link
    Can we learn a binary classifier from only positive data, without any negative data or unlabeled data? We show that if one can equip positive data with confidence (positive-confidence), one can successfully learn a binary classifier, which we name positive-confidence (Pconf) classification. Our work is related to one-class classification which is aimed at "describing" the positive class by clustering-related methods, but one-class classification does not have the ability to tune hyper-parameters and their aim is not on "discriminating" positive and negative classes. For the Pconf classification problem, we provide a simple empirical risk minimization framework that is model-independent and optimization-independent. We theoretically establish the consistency and an estimation error bound, and demonstrate the usefulness of the proposed method for training deep neural networks through experiments.Comment: NeurIPS 2018 camera-ready version (this paper was selected for spotlight presentation

    The Newton Scheme for Deep Learning

    Full text link
    We introduce a neural network (NN) strictly governed by Newton's Law, with the nature required basis functions derived from the fundamental classic mechanics. Then, by classifying the training model as a quick procedure of 'force pattern' recognition, we developed the Newton physics-based NS scheme. Once the force pattern is confirmed, the neuro network simply does the checking of the 'pattern stability' instead of the continuous fitting by computational resource consuming big data-driven processing. In the given physics's law system, once the field is confirmed, the mathematics bases for the force field description actually are not diverged but denumerable, which can save the function representations from the exhaustible available mathematics bases. In this work, we endorsed Newton's Law into the deep learning technology and proposed Newton Scheme (NS). Under NS, the user first identifies the path pattern, like the constant acceleration movement.The object recognition technology first loads mass information, then, the NS finds the matched physical pattern and describe and predict the trajectory of the movements with nearly zero error. We compare the major contribution of this NS with the TCN, GRU and other physics inspired 'FIND-PDE' methods to demonstrate fundamental and extended applications of how the NS works for the free-falling, pendulum and curve soccer balls.The NS methodology provides more opportunity for the future deep learning advances.Comment: 7 pages, 10 figure

    Generalizing the Convolution Operator in Convolutional Neural Networks

    Full text link
    Convolutional neural networks have become a main tool for solving many machine vision and machine learning problems. A major element of these networks is the convolution operator which essentially computes the inner product between a weight vector and the vectorized image patches extracted by sliding a window in the image planes of the previous layer. In this paper, we propose two classes of surrogate functions for the inner product operation inherent in the convolution operator and so attain two generalizations of the convolution operator. The first one is the class of positive definite kernel functions where their application is justified by the kernel trick. The second one is the class of similarity measures defined based on a distance function. We justify this by tracing back to the basic idea behind the neocognitron which is the ancestor of CNNs. Both methods are then further generalized by allowing a monotonically increasing function to be applied subsequently. Like any trainable parameter in a neural network, the template pattern and the parameters of the kernel/distance function are trained with the back-propagation algorithm. As an aside, we use the proposed framework to justify the use of sine activation function in CNNs. Our experiments on the MNIST dataset show that the performance of ordinary CNNs can be achieved by generalized CNNs based on weighted L1/L2 distances, proving the applicability of the proposed generalization of the convolutional neural networks.Comment: Neural Process Lett (2019

    Spurious Local Minima are Common in Two-Layer ReLU Neural Networks

    Full text link
    We consider the optimization problem associated with training simple ReLU neural networks of the form xi=1kmax{0,wix}\mathbf{x}\mapsto \sum_{i=1}^{k}\max\{0,\mathbf{w}_i^\top \mathbf{x}\} with respect to the squared loss. We provide a computer-assisted proof that even if the input distribution is standard Gaussian, even if the dimension is arbitrarily large, and even if the target values are generated by such a network, with orthonormal parameter vectors, the problem can still have spurious local minima once 6k206\le k\le 20. By a concentration of measure argument, this implies that in high input dimensions, \emph{nearly all} target networks of the relevant sizes lead to spurious local minima. Moreover, we conduct experiments which show that the probability of hitting such local minima is quite high, and increasing with the network size. On the positive side, mild over-parameterization appears to drastically reduce such local minima, indicating that an over-parameterization assumption is necessary to get a positive result in this setting
    corecore