6 research outputs found

    Software integration in mobile robotics, a science to scale up machine intelligence

    Get PDF
    The present work tackles integration in mobile robotics. Integration is often considered to be a mere technique, unworthy of scientific investigation. On the contrary, we show that integrating capabilities in a mobile robot entails new questions that the parts alone do not feature. These questions reflect the structure of the application and the physics of the world. We also show that a successful integration process transforms the parts themselves and allows to scale up mobile-robot intelligence in real-world applications. In Chapter 2 we present the hardware. In Chapter 3, we show that building a low-level control architecture considering the mechanic and electronic reality of the robot improves the performances and allows to integrate a large number of sensors and actuators. In Chapter 4, we show that globally optimising mechatronic parameters considering the robot as a whole allows to implement slam using an inexpensive sensor with a low processor load. In Chapter 5, we show that based on the output from the slam algorithm, we can combine infrared proximity sensors and vision to detect objects and to build a semantic map of the environment. We show how to find free paths for the robot and how to create a dual geometric-symbolic representation of the world. In Chapter 6, we show that the nature of scenarios influences the implementation of a task-planning algorithm and changes its execution properties. All these chapters contribute results that together prove that integration is a science. In Chapter 7, we show that combining these results improves the state of the art in a difficult application : autonomous construction in unknown environments with scarce resources. This application is interesting because it is challenging at multiple levels : For low-level control, manipulating objects in the real world to build structures is difficult. At the level of perceptions, the fusion of multiple heterogeneous inexpensive sensors is not trivial, because these sensors are noisy and the noise is non-Gaussian. At the level of cognition, reasoning about elements from an unknown world in real time on a miniature robot is demanding. Building this application upon our other results proves that integration allows to scale up machine intelligence, because this application shows intelligence that is beyond the state of the art, still only combining basic components that are individually slightly behind the state of the art

    The Gait Design and Trajectory Planning of a Gecko-Inspired Climbing Robot

    No full text
    Inspired by the dynamic gait adopted by gecko, we had put forward GPL (Gecko-inspired mechanism with a Pendular waist and Linear legs) model with one passive waist and four active linear legs. To further develop dynamic gait and reduce energy consumption of climbing robot based on the GPL model, the gait design and trajectory planning are addressed in this paper. According to kinematics and dynamics of GPL, the trot gait and continuity analysis are executed. The effects of structural parameters on the supporting forces are analyzed. Moreover, the trajectory of the waist is optimized based on system energy consumption. Finally, a bioinspired robot is developed and the prototype experiment results show that the larger body length ratio, a certain elasticity of the waist joint, and the optimized trajectory contribute to a decrease in the supporting forces and reduction in system energy consumption, especially negative forces on supporting feet. Further, the results in our experiments partly explain the reasonability of quadruped reptile’s kinesiology during dynamic gait

    Hands-on Science. Advancing Science. Improving Education

    Get PDF
    The book herein aims to contribute to the advancement of Science to the improvement of Science Education and to an effective implementation of a sound widespread scientific literacy at all levels of society. Its chapters reunite a variety of diverse and valuable works presented in this line of thought at the 15th International Conference on Hands-on Science “Advancing Science. Improving Education
    corecore