251 research outputs found

    Development of a Training-Assist Robotic System Adapting to Individual Motor Abilities in Virtual Tennis Task

    Get PDF
    The present paper develops a training-assist robotic system that can adapt a reference hand motion for a virtual tennis task to individual motor abilities. The system first measures maximum hand force and velocity in reaching arm movements prior to the training, and designs a suitable reference trajectory for teaching motion smoothness and timing in the virtual tennis task based on the measured results. A quantitative index for evaluating task performance and motor functions are then defined with consideration of task dynamics. Finally, the effectiveness of the developed training system is validated through a set of preliminary training experiments with health subjects

    Database of Video Games and Their Therapeutic Properties

    Get PDF
    There are reported to be 2.96 billion video game players in the world as of 2021 and this number is expected to grow to 3.32 billion by the year 2024. Of that total, 215.5 million video game players live in the United States with a reported average age of 33 years old. Thousands of commercial video games are released every year. There is evidence to support video game technology use as therapeutic media however it predominately utilizes outdated technology or technology designed for a specific purpose also called “serious games.” The problem is that OT practitioners are unaware of the potential therapeutic properties of video games they have not played, so are unable to integrate unfamiliar video games as therapeutic media in clinical practice. The purpose of this capstone project is to develop an online database of commercial video games, and their therapeutic properties, to facilitate their use as therapeutic media in OT practice. To address this problem a webpage was developed in partnership with the Family Gaming Database that cataloged 10 commercial video games from commercially available video game subscription services and the Nintendo Switch. The 10 games were subject to an activity analysis based on the AMPS to determine their therapeutic potential. The resulting webpage contains three main lists in which filters can be applied in order to display games that meet a specific desired criterion. Applicable filters include platform, age rating, difficulty, and specific accessibility features. Keywords: database, occupational therapy, video game, video game

    Development and Application of 3D Kinematic Methodologies for Biomechanical Modelling in Adaptive Sports and Rehabilitation

    Get PDF
    Biomechanical analysis is widely used to assess human movement sciences, specifically using three-dimensional motion capture modelling. There are unprecedented opportunities to increase quantitative knowledge of rehabilitation and recreation for disadvantaged population groups. Specifically, 3D models and movement profiles for human gait analysis were generated with emphasis on post-stroke patients, with direct model translation to analyze equivalent measurements while horseback riding in use of the alternative form of rehabilitation, equine assisted activities and therapies (EAAT) or hippotherapy (HPOT). Significant improvements in gait symmetry and velocity were found within an inpatient rehabilitation setting for patients following a stroke, and the developed movement profiles for patients have the potential to address patient recovery timelines. For population groups, such as those following a cerebral incident, alternative forms of rehabilitation like EAAT and HPOT are largely unexplored. Within these studies, relevant muscular activations were found between healthy human gait and horseback riding, supporting the belief that horseback riding can stimulate similar movements within the rider. Even more, there was a strong correlation between the horse’s pelvic rotations, and the responsive joint moments and rotations of the rider. These findings could have greater implications in choosing horses, depending on the desired physical outcome, for EAAT and HPOT purposes. Similar approaches were also used to address another biomechanically disadvantage population, adaptive sport athletes. Utilizing similar methodologies, a novel 3D wheelchair tennis athlete model was created to analyze match-simulation assessments. Significant findings were present in the energy expenditure between two drill assessments. Overall, the quantitative results, coupled with the qualitative assessment chapter, provide a robust assessment of the effects of 3D movement analysis on rehabilitation and adaptive activities

    EFFECTS OF PROXIMAL STABILITY TRAINING ON SPORT PERFORMANCE AND PROXIMAL STABILITY MEASURES

    Get PDF
    Proximal stability, or the ability to stabilize and actively control the spine, pelvis and trunk, has been reported to influence sport performance. Traditional training practices for the proximal segments have had little success improving sport performance. The purpose of this dissertation was to investigate the effects a sport specific proximal stability training program can have on throwing velocity and measures of muscular endurance and power which target the proximal segments of the pelvis, spine and trunk. A stratified randomized clinical trial was implemented with a pre- to post-intervention design. Forty-six healthy, Division III collegiate female softball (n=17) and male baseball (n=29) players were randomly assigned to one of two training groups for 7 weeks; a traditional endurance training group (ET) (n=21) or a power stability training group (PS) (n=25). The primary outcome measures were the change in peak throwing velocity/Kg of body weight in mph. Mean throwing velocity, power outputs from a one-repetition maximum chop test and lift test (watts/Kg body weight), and muscular endurance plank tests. Student’s independent t-tests were used to compare differences between change scores of all dependent variables. Peak throwing velocity change scores were significantly faster (ET= .21 ±.55 mph, PS= 3.4 ±1.1 mph, p\u3c .001) in the PS at post-intervention when compared to the ET group. Change scores were significantly greater in the PS group for mean throwing velocity, (ET= 1.1 ±1.6 mph vs. PS= 3.7 ±1.8 mph, p\u3c .001), chop (watts), (ET= 20 ±78 watts vs. PS= 105 ±68 watts, p\u3c .001), and lift, (ET= 49 ±62 watts vs. PS= 114 ±73 watts, p= .003). There were no change score differences for the side and prone plank endurance measures in seconds (p≥ .60). The PS group increased primary outcome measures over the ET program, indicating a more sport specific training regimen targeting the proximal segments is beneficial to both the power measures and throwing performance

    A Person-Centric Design Framework for At-Home Motor Learning in Serious Games

    Get PDF
    abstract: In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in contrast to the standard techniques implemented in related work, to address many of the limitations of these approaches. The unique advantages and restrictions of this approach are presented in the form of a case study in which a system entitled the "Autonomous Training Assistant" consisting of both hardware and software for guided at-home motor learning is designed and adapted for a specific individual and trainer. In this work, the design of an autonomous motor learning environment is approached from three areas: motor assessment, multimodal feedback, and serious game design. For motor assessment, a 3-dimensional assessment framework is proposed which comprises of 2 spatial (posture, progression) and 1 temporal (pacing) domains of real-time motor assessment. For multimodal feedback, a rod-shaped device called the "Intelligent Stick" is combined with an audio-visual interface to provide feedback to the subject in three domains (audio, visual, haptic). Feedback domains are mapped to modalities and feedback is provided whenever the user's performance deviates from the ideal performance level by an adaptive threshold. Approaches for multi-modal integration and feedback fading are discussed. Finally, a novel approach for stealth adaptation in serious game design is presented. This approach allows serious games to incorporate motor tasks in a more natural way, facilitating self-assessment by the subject. An evaluation of three different stealth adaptation approaches are presented and evaluated using the flow-state ratio metric. The dissertation concludes with directions for future work in the integration of stealth adaptation techniques across the field of exergames.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Master of Science

    Get PDF
    thesisIncreasing baseball bat velocity is the goal of many baseball strength and conditioning programs, as fast bat velocity is essential for successfully hitting a baseball. Despite the desire to increase bat velocity, few studies have examined the effectiveness of training using rotational and linear plyometric exercises in baseball batting specific motions. This study investigates the effects of a combination rotational and linear plyometric program on baseball bat swing velocity. Participants consisted of healthy male NCAA Division I baseball hitters. Twelve participants were randomly assigned to one of two groups, an experimental and a control group. All participants performed standard off-season baseball practice and weight training. The experimental group also completed a rotational and linear plyometric exercise program two times per week for 8 weeks, while the control group had no intervention. Bat velocity was assessed prior to training, after 4 weeks of training, and after 8 weeks of training. A 2x3 mixed factorial repeated measures design was used to investigate the effects of the rotational and linear training program on bat velocity. Significance was set at alpha < 0.05. No significant main group effect, time effect, or time and group effect was found. However practical significance was found, as the plyometric training group had a 9.5% improvement in bat velocity and the control group had a 1.7% improvement in bat velocity at the end of the study. Therefore, the use of normal practice and weight training, and a combination rotational and linear plyometric program had no significant effect on baseball bat velocity, but did account for some positive increases. This study serves as a starting point for further research needed to improve bat velocity in Division I College baseball players

    Analysis of the backpack loading efects on the human gait

    Get PDF
    Gait is a simple activity of daily life and one of the main abilities of the human being. Often during leisure, labour and sports activities, loads are carried over (e.g. backpack) during gait. These circumstantial loads can generate instability and increase biomechanicalstress over the human tissues and systems, especially on the locomotor, balance and postural regulation systems. According to Wearing (2006), subjects that carry a transitory or intermittent load will be able to find relatively efficient solutions to compensate its effects.info:eu-repo/semantics/publishedVersio
    corecore