282,590 research outputs found

    An Implementation Approach and Performance Analysis of Image Sensor Based Multilateral Indoor Localization and Navigation System

    Full text link
    Optical camera communication (OCC) exhibits considerable importance nowadays in various indoor camera based services such as smart home and robot-based automation. An android smart phone camera that is mounted on a mobile robot (MR) offers a uniform communication distance when the camera remains at the same level that can reduce the communication error rate. Indoor mobile robot navigation (MRN) is considered to be a promising OCC application in which the white light emitting diodes (LEDs) and an MR camera are used as transmitters and receiver respectively. Positioning is a key issue in MRN systems in terms of accuracy, data rate, and distance. We propose an indoor navigation and positioning combined algorithm and further evaluate its performance. An android application is developed to support data acquisition from multiple simultaneous transmitter links. Experimentally, we received data from four links which are required to ensure a higher positioning accuracy

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    MIMO Underwater Visible Light Communications: Comprehensive Channel Study, Performance Analysis, and Multiple-Symbol Detection

    Full text link
    In this paper, we analytically study the bit error rate (BER) performance of underwater visible light communication (UVLC) systems with binary pulse position modulation (BPPM). We simulate the channel fading-free impulse response (FFIR) based on Monte Carlo numerical method to take into account the absorption and scattering effects. Additionally, to characterize turbulence effects, we multiply the aforementioned FFIR by a fading coefficient which for weak oceanic turbulence can be modeled as a lognormal random variable (RV). Moreover, to mitigate turbulence effects, we employ multiple transmitters and/or receivers, i.e., spatial diversity technique over UVLC links. Closed-form expressions for the system BER are provided, when equal gain combiner (EGC) is employed at the receiver side, thanks to Gauss-Hermite quadrature formula and approximation to the sum of lognormal RVs. We further apply saddle-point approximation, an accurate photon-counting-based method, to evaluate the system BER in the presence of shot noise. Both laser-based collimated and light emitting diode (LED)-based diffusive links are investigated. Since multiple-scattering effect of UVLC channels on the propagating photons causes considerable inter-symbol interference (ISI), especially for diffusive channels, we also obtain the optimum multiple-symbol detection (MSD) algorithm to significantly alleviate ISI effects and improve the system performance. Our numerical analysis indicates good matches between the analytical and photon-counting results implying the negligibility of signal-dependent shot noise, and also between analytical results and numerical simulations confirming the accuracy of our derived closed-form expressions for the system BER. Besides, our results show that spatial diversity significantly mitigates fading impairments while MSD considerably alleviates ISI deteriorations

    Design of a Cognitive VLC Network with Illumination and Handover Requirements

    Full text link
    In this paper, we consider a cognitive indoor visible light communications (VLC) system, comprised of multiple access points serving primary and secondary users through the orthogonal frequency division multiple access method. A cognitive lighting cell is divided into two non-overlapping regions that distinguish the primary and secondary users based on the region they are located in. Under the assumption of equal-power allocation among subcarriers, each region is defined in terms of its physical area and the number of allocated subcarriers within that region. In this paper, we provide the lighting cell design with cognitive constraints that guarantee fulfilling certain illumination, user mobility, and handover requirements in each cell. We further argue that, under some conditions, a careful assignment of the subcarriers in each region can mitigate the co-channel interference in the overlapping areas of adjacent cells. Numerical results depict the influence of different system parameters, such as user density, on defining both regions. Finally, a realistic example is implemented to assess the performance of the proposed scheme via Monte Carlo simulations
    corecore