25 research outputs found

    Smart industrial IoT monitoring and control system based on UAV and cloud computing applied to a concrete plant

    Get PDF
    Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.The authors would like to thank the Seneca Foundation as also FRUMECAR S.L., for their support and the opportunity to implement and test the proposed approach on their facilities. This work was partially supported by FRUMECAR S.L. and Seneca Foundation's "Murcia Regional Scientific Excellence Research Program" (Murcia Science and Technology Agency-19895/GERM/15)

    Real-Time Performance of OPC UA

    Full text link
    OPC UA is an industry-standard machine-to-machine communication protocol in the Industrial Internet of Things. It relies on time-sensitive networking to meet the real-time requirements of various applications. Time-sensitive networking is implemented through various queueing disciplines (qdiscs), including Time Aware Priority, Multiqueue Priority, Earliest TxTime First, and Credit-Based Shaper. Despite their significance, prior studies on these qdiscs have been limited to a few. They have often been confined to point-to-point network topologies using proprietary software or specialized hardware. This study builds upon existing research by evaluating all these qdiscs in point-to-point and bridged topologies using open-source software on commercial off-the-shelf hardware. We first identify the optimal configuration for each qdisc and then compare their jitter, latency, and reliability through experiments. Our results show that open-source OPC UA on commercial off-the-shelf hardware can effectively meet the stringent real-time requirements of many industrial applications and provide a foundation for future research and practical deployments

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open Access-Tagungsband sind die besten Beiträge des 11. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2020) und des 7. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2020) enthalten. Die Kolloquien fanden am 28. und 29. Oktober 2020 statt und wurden erstmalig als digitale Webveranstaltung auf dem Innovation Campus Lemgo organisiert. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschauliche Anwendungsbeispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF

    Kommunikation in der Automation : Beiträge des Jahreskolloquiums KommA 2022

    Get PDF

    Kommunikation in der Automation : Beiträge des Jahreskolloquiums KommA 2022

    Get PDF

    QoS-aware architectures, technologies, and middleware for the cloud continuum

    Get PDF
    The recent trend of moving Cloud Computing capabilities to the Edge of the network is reshaping how applications and their middleware supports are designed, deployed, and operated. This new model envisions a continuum of virtual resources between the traditional cloud and the network edge, which is potentially more suitable to meet the heterogeneous Quality of Service (QoS) requirements of diverse application domains and next-generation applications. Several classes of advanced Internet of Things (IoT) applications, e.g., in the industrial manufacturing domain, are expected to serve a wide range of applications with heterogeneous QoS requirements and call for QoS management systems to guarantee/control performance indicators, even in the presence of real-world factors such as limited bandwidth and concurrent virtual resource utilization. The present dissertation proposes a comprehensive QoS-aware architecture that addresses the challenges of integrating cloud infrastructure with edge nodes in IoT applications. The architecture provides end-to-end QoS support by incorporating several components for managing physical and virtual resources. The proposed architecture features: i) a multilevel middleware for resolving the convergence between Operational Technology (OT) and Information Technology (IT), ii) an end-to-end QoS management approach compliant with the Time-Sensitive Networking (TSN) standard, iii) new approaches for virtualized network environments, such as running TSN-based applications under Ultra-low Latency (ULL) constraints in virtual and 5G environments, and iv) an accelerated and deterministic container overlay network architecture. Additionally, the QoS-aware architecture includes two novel middlewares: i) a middleware that transparently integrates multiple acceleration technologies in heterogeneous Edge contexts and ii) a QoS-aware middleware for Serverless platforms that leverages coordination of various QoS mechanisms and virtualized Function-as-a-Service (FaaS) invocation stack to manage end-to-end QoS metrics. Finally, all architecture components were tested and evaluated by leveraging realistic testbeds, demonstrating the efficacy of the proposed solutions

    Managing Device and Platform Heterogeneity through the Web of Things

    Get PDF
    The chaotic growth of the IoT determined a fragmented landscape with a huge number of devices, technologies, and platforms available on the market, and consequential issues of interoperability on many system deployments. The Web of Things (WoT) architecture recently proposed by the W3C consortium constitutes a novel solution to enable interoperability across IoT Platforms and application domains. At the same time, in order to see an effective improvement, a wide adoption of the W3C WoT solutions from the academic and industrial communities is required; this translates into the need of accurate and complete support tools to ease the deployment of W3C WoT applications, as well as reference guidelines about how to enable the WoT on top of existing IoT scenarios and how to deploy WoT scenarios from scratch. In this thesis, we bring three main contributions for filling such gap: (1) we introduce the WoT Store, a novel platform for managing and easing the deployment of Things and applications on the W3C WoT, and additional strategies for bringing old legacy IoT systems into the WoT. The WoT Store allows the dynamic discovery of the resources available in the environment, i.e. the Things, and to interact with each of them through a dashboard by visualizing their properties, executing commands, or observing the notifications produced. (2) We map three different IoT scenarios to WoT scenarios: a generic heterogeneous environmental monitoring scenario, a structural health monitoring scenario and an Industry4.0 scenario. (3) We make proposals to improve both the W3C standard and the node-wot software stack design: in the first case, new vocabularies are needed in order to handle particular protocols employed in industrial scenarios, while in the second case we present some contributions required for the dynamic instantiation and the migration of Web Things and WoT services in a cloud-to-edge continuum environment

    Towards a Unified and Robust Data-Driven Approach. A Digital Transformation of Production Plants in the Age of Industry 4.0

    Get PDF
    Nowadays, industrial companies are engaging their global transition toward the fourth industrial revolution (the so-called Industry 4.0). The main objective is to increase the Overall Equipment Effectiveness (OEE), by collecting, storing and analyzing production data. Several challenges have to be tackled to propose a unified data-driven approach to rely on, from the low-layers data collection on the machine production lines using Operational Technologies (OT), to the monitoring and more importantly the analysis of the data using Information Technologies (IT). This is all the more important for companies having decades of existence – as Cebi Luxembourg S.A., our partner in a Research, Development and Innovation project subsidised by the ministry of the Economy in Luxembourg – to upgrade their on-site technologies and move towards new business models. Artificial Intelligence (AI) now knows a real interest from industrial actors and becomes a cornerstone technology for helping humans in decision-making and data-analysis tasks, thanks to the huge amount of (sensors-based) univariate time-series available in the production floor. However, such amount of data is not sufficient for AI to work properly and to make right decisions. This also requires a good data quality. Indeed, good theoretical performance and high accuracy can be obtained when trained and tested in isolation, but AI models may still provide degraded performance in real/industrial conditions. In that context, the problem is twofold: • Industrial production systems are vertically-oriented closed systems that make difficult their communication and their cooperation with each other, and intrinsically the data collection. • Industrial companies used to implement deterministic processes. Introducing AI - that can be classified as stochastic - in the industry requires a full understanding of the potential deviation of the models in order to be aware of their domain of validity. This dissertation proposes a unified strategy for digitizing an industrial system and methods for evaluating the performance and the robustness of AI models that can be used in such data-driven production plants. In the first part of the dissertation, we propose a three-steps strategy to digitize an industrial system, called TRIDENT, that enables industrial actors to implement data collection on production lines, and in fine to monitor in real-time the production plant. Such strategy has been implemented and evaluated on a pilot case-study at Cebi Luxembourg S.A. Three protocols (OPC-UA, MQTT and O-MI/O-DF) are used for investigating their impact on the real-time performance. The results show that, even if these protocols have some disparity in terms of performance, they are suitable for an industrial deployment. This strategy has now been extended and implemented by our partner - Cebi Luxembourg S.A - in its production environment. In the second part of the thesis dissertation, we aim at investigating the robustness of AI models in industrial settings. We then propose a systematic approach to evaluate the robustness under perturbations. Assuming that i) real perturbations - in particular on the data collection - cannot be recorded or generated in real industrial environment (that could lead to production stops) and ii) a model would not be implemented before evaluating its potential deviations, limits or weaknesses, our approach is based on artificial injections of perturbations into the data sets, and is evaluated on state-of-the-art classifiers (both Machine-Learning and Deep-Learning) and data sets (in particular, public sensors-based univariate time series). First, we propose a coarse-grained study, with two artificial perturbations - called swapping effect and dropping effect - in which simple random algorithms are used. This already highlights a great disparity of the models’ robustness under such perturbations that industrial actors need to be aware of. Second, we propose a fine-grained study where instead of testing randomly some parameters' values, we used Genetic Algorithms to look for the models' limits. To do so, we define our multi-objectives optimisation problem with a fitness function as: maximising the impact of the perturbations (i.e. decreasing the most the model's accuracy), while minimising the changes in the time-series (with regards to our two parameters). This can be seen as an adversarial case, where the goal is not to exploit these weaknesses in a malicious way but to be aware of. Based on such a study, methods for making more robust the model and/or for observing such behaviour on the infrastructure could be investigated and implemented if needed. The tool developed in this latter study is therefore ready for being used in a real industrial case, where data sets and perturbations can now be fitted to the scenario
    corecore