2 research outputs found

    Analysis of the Rigorous Coupled Wave Approach for s-Polarized Light in Gratings

    Full text link
    We study the convergence properties of the two-dimensional Rigorous Coupled Wave Approach (RCWA) for s-polarized monochromatic incident light. The RCWA is widely used to solve electromagnetic boundary-value problems where the relative permittivity varies periodically in one direction, i.e., scattering by a grating. This semi-analytical approach expands all the electromagnetic field phasors as well as the relative permittivity as Fourier series in the spatial variable along the direction of periodicity, and also replaces the relative permittivity with a stairstep approximation along the direction normal to the direction of periodicity. Thus, there is error due to Fourier truncation and also due to the approximation of grating permittivity. We prove that the RCWA is a Galerkin scheme, which allows us to employ techniques borrowed from the Finite Element Method to analyze the error. An essential tool is a Rellich identity that shows that certain continuous problems have unique solutions that depend continuously on the data with a continuity constant having explicit dependence on the relative permittivity. We prove that the RCWA converges with an increasing number of retained Fourier modes and with a finer approximation of the grating interfaces. Numerical results show that our convergence results for increasing the number of retained Fourier modes are seen in practice, while our estimates of convergence in slice thickness are pessimistic

    Analysis of the Rigorous Coupled Wave Approach for p-polarized light in gratings

    Full text link
    We study the convergence properties of the two-dimensional Rigorous Coupled Wave Approach (RCWA) for p-polarized monochromatic incident light. The RCWA is a semi-analytical numerical method that is widely used to solve the boundary-value problem of scattering by a grating. The approach requires the expansion of all electromagnetic field phasors and the relative permittivity as Fourier series in the spatial variable along the direction of the periodicity of the grating. In the direction perpendicular to the grating periodicity, the domain is discretized into thin slices and the actual relative permittivity is replaced by an approximation. The approximate relative permittivity is chosen so that the solution of the Maxwell equations in each slice can be computed without further approximation. Thus, there is error due to the approximate relative permittivity as well as the trucation of the Fourier series. We show that the RCWA embodies a Galerkin scheme for a perturbed problem, and then we use tools from the Finite Element Method to show that the method converges with increasing number of retained Fourier modes and finer approximations of the relative permittivity. Numerical examples illustrate our analysis, and suggest further work
    corecore