2,418 research outputs found

    Optimal Cooperative Cognitive Relaying and Spectrum Access for an Energy Harvesting Cognitive Radio: Reinforcement Learning Approach

    Full text link
    In this paper, we consider a cognitive setting under the context of cooperative communications, where the cognitive radio (CR) user is assumed to be a self-organized relay for the network. The CR user and the PU are assumed to be energy harvesters. The CR user cooperatively relays some of the undelivered packets of the primary user (PU). Specifically, the CR user stores a fraction of the undelivered primary packets in a relaying queue (buffer). It manages the flow of the undelivered primary packets to its relaying queue using the appropriate actions over time slots. Moreover, it has the decision of choosing the used queue for channel accessing at idle time slots (slots where the PU's queue is empty). It is assumed that one data packet transmission dissipates one energy packet. The optimal policy changes according to the primary and CR users arrival rates to the data and energy queues as well as the channels connectivity. The CR user saves energy for the PU by taking the responsibility of relaying the undelivered primary packets. It optimally organizes its own energy packets to maximize its payoff as time progresses

    Optimal Random Access and Random Spectrum Sensing for an Energy Harvesting Cognitive Radio with and without Primary Feedback Leveraging

    Full text link
    We consider a secondary user (SU) with energy harvesting capability. We design access schemes for the SU which incorporate random spectrum sensing and random access, and which make use of the primary automatic repeat request (ARQ) feedback. We study two problem-formulations. In the first problem-formulation, we characterize the stability region of the proposed schemes. The sensing and access probabilities are obtained such that the secondary throughput is maximized under the constraints that both the primary and secondary queues are stable. Whereas in the second problem-formulation, the sensing and access probabilities are obtained such that the secondary throughput is maximized under the stability of the primary queue and that the primary queueing delay is kept lower than a specified value needed to guarantee a certain quality of service (QoS) for the primary user (PU). We consider spectrum sensing errors and assume multipacket reception (MPR) capabilities. Numerical results show the enhanced performance of our proposed systems.Comment: ACCEPTED in EAI Endorsed Transactions on Cognitive Communications. arXiv admin note: substantial text overlap with arXiv:1208.565

    Optimal Random Access and Random Spectrum Sensing for an Energy Harvesting Cognitive Radio

    Full text link
    We consider a secondary user with energy harvesting capability. We design access schemes for the secondary user which incorporate random spectrum sensing and random access, and which make use of the primary automatic repeat request (ARQ) feedback. The sensing and access probabilities are obtained such that the secondary throughput is maximized under the constraints that both the primary and secondary queues are stable and that the primary queueing delay is kept lower than a specified value needed to guarantee a certain quality of service (QoS) for the primary user. We consider spectrum sensing errors and assume multipacket reception (MPR) capabilities. Numerical results are presented to show the enhanced performance of our proposed system over a random access system, and to demonstrate the benefit of leveraging the primary feedback.Comment: in WiMob 201
    • …
    corecore