714 research outputs found

    Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach

    Full text link
    We propose an efficient method to evaluate callable and putable bonds under a wide class of interest rate models, including the popular short rate diffusion models, as well as their time changed versions with jumps. The method is based on the eigenfunction expansion of the pricing operator. Given the set of call and put dates, the callable and putable bond pricing function is the value function of a stochastic game with stopping times. Under some technical conditions, it is shown to have an eigenfunction expansion in eigenfunctions of the pricing operator with the expansion coefficients determined through a backward recursion. For popular short rate diffusion models, such as CIR, Vasicek, 3/2, the method is orders of magnitude faster than the alternative approaches in the literature. In contrast to the alternative approaches in the literature that have so far been limited to diffusions, the method is equally applicable to short rate jump-diffusion and pure jump models constructed from diffusion models by Bochner's subordination with a L\'{e}vy subordinator

    Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes

    Full text link
    Fast pricing of American-style options has been a difficult problem since it was first introduced to financial markets in 1970s, especially when the underlying stocks' prices follow some jump-diffusion processes. In this paper, we propose a new algorithm to generate tight upper bounds on the Bermudan option price without nested simulation, under the jump-diffusion setting. By exploiting the martingale representation theorem for jump processes on the dual martingale, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal-dual algorithm, therefore significantly improves the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our proposed algorithm

    Regularity of the Optimal Stopping Problem for Jump Diffusions

    Full text link
    The value function of an optimal stopping problem for jump diffusions is known to be a generalized solution of a variational inequality. Assuming that the diffusion component of the process is nondegenerate and a mild assumption on the singularity of the L\'{e}vy measure, this paper shows that the value function of this optimal stopping problem on an unbounded domain with finite/infinite variation jumps is in Wp,loc2,1W^{2,1}_{p, loc} with p∈(1,∞)p\in(1, \infty). As a consequence, the smooth-fit property holds.Comment: To Appear in the SIAM Journal on Control and Optimizatio
    • …
    corecore