132 research outputs found

    Analysis of Recovery Type A Posteriori Error Estimators for Mildly Structured Grids

    Get PDF
    Some recovery type error estimators for linear finite element method are analyzed under O(h1+alpha) (alpha greater than 0) regular grids. Superconvergence is established for recovered gradients by three different methods when solving general non-self-adjoint second-order elliptic equations. As a consequence, a posteriori error estimators based on those recovery methods are asymptotically exact

    How a nonconvergent recovered Hessian works in mesh adaptation

    Get PDF
    Hessian recovery has been commonly used in mesh adaptation for obtaining the required magnitude and direction information of the solution error. Unfortunately, a recovered Hessian from a linear finite element approximation is nonconvergent in general as the mesh is refined. It has been observed numerically that adaptive meshes based on such a nonconvergent recovered Hessian can nevertheless lead to an optimal error in the finite element approximation. This also explains why Hessian recovery is still widely used despite its nonconvergence. In this paper we develop an error bound for the linear finite element solution of a general boundary value problem under a mild assumption on the closeness of the recovered Hessian to the exact one. Numerical results show that this closeness assumption is satisfied by the recovered Hessian obtained with commonly used Hessian recovery methods. Moreover, it is shown that the finite element error changes gradually with the closeness of the recovered Hessian. This provides an explanation on how a nonconvergent recovered Hessian works in mesh adaptation.Comment: Revised (improved proofs and a better example

    Gradient Recovery and A Posteriori Estimate for Bilinear Element on Irregular Quadrilateral Meshes

    Get PDF
    A polynomial preserving gradient recovery method is proposed and analyzed for bilinear element under general quadrilateral meshes. It has been proven that the recovered gradient converges at a rate O(h1+rho) for rho = min(alpha, 1) when the mesh is distorted O(h1+alpha) (alpha \u3e 0) from a regular one. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact
    corecore