39,896 research outputs found

    A summary of the 2012 JHU CLSP Workshop on Zero Resource Speech Technologies and Models of Early Language Acquisition

    Get PDF
    We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding zero resource (unsupervised) speech technologies and related models of early language acquisition. Centered around the tasks of phonetic and lexical discovery, we consider unified evaluation metrics, present two new approaches for improving speaker independence in the absence of supervision, and evaluate the application of Bayesian word segmentation algorithms to automatic subword unit tokenizations. Finally, we present two strategies for integrating zero resource techniques into supervised settings, demonstrating the potential of unsupervised methods to improve mainstream technologies.5 page(s

    Semi-supervised and Active-learning Scenarios: Efficient Acoustic Model Refinement for a Low Resource Indian Language

    Full text link
    We address the problem of efficient acoustic-model refinement (continuous retraining) using semi-supervised and active learning for a low resource Indian language, wherein the low resource constraints are having i) a small labeled corpus from which to train a baseline `seed' acoustic model and ii) a large training corpus without orthographic labeling or from which to perform a data selection for manual labeling at low costs. The proposed semi-supervised learning decodes the unlabeled large training corpus using the seed model and through various protocols, selects the decoded utterances with high reliability using confidence levels (that correlate to the WER of the decoded utterances) and iterative bootstrapping. The proposed active learning protocol uses confidence level based metric to select the decoded utterances from the large unlabeled corpus for further labeling. The semi-supervised learning protocols can offer a WER reduction, from a poorly trained seed model, by as much as 50% of the best WER-reduction realizable from the seed model's WER, if the large corpus were labeled and used for acoustic-model training. The active learning protocols allow that only 60% of the entire training corpus be manually labeled, to reach the same performance as the entire data

    Multilingual Adaptation of RNN Based ASR Systems

    Full text link
    In this work, we focus on multilingual systems based on recurrent neural networks (RNNs), trained using the Connectionist Temporal Classification (CTC) loss function. Using a multilingual set of acoustic units poses difficulties. To address this issue, we proposed Language Feature Vectors (LFVs) to train language adaptive multilingual systems. Language adaptation, in contrast to speaker adaptation, needs to be applied not only on the feature level, but also to deeper layers of the network. In this work, we therefore extended our previous approach by introducing a novel technique which we call "modulation". Based on this method, we modulated the hidden layers of RNNs using LFVs. We evaluated this approach in both full and low resource conditions, as well as for grapheme and phone based systems. Lower error rates throughout the different conditions could be achieved by the use of the modulation.Comment: 5 pages, 1 figure, to appear in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    Linguistic unit discovery from multi-modal inputs in unwritten languages: Summary of the "Speaking Rosetta" JSALT 2017 Workshop

    Get PDF
    We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding the discovery of linguistic units (subwords and words) in a language without orthography. We study the replacement of orthographic transcriptions by images and/or translated text in a well-resourced language to help unsupervised discovery from raw speech.Comment: Accepted to ICASSP 201
    corecore