74,670 research outputs found
An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service
In this paper, we present machine learning approaches for characterizing and
forecasting the short-term demand for on-demand ride-hailing services. We
propose the spatio-temporal estimation of the demand that is a function of
variable effects related to traffic, pricing and weather conditions. With
respect to the methodology, a single decision tree, bootstrap-aggregated
(bagged) decision trees, random forest, boosted decision trees, and artificial
neural network for regression have been adapted and systematically compared
using various statistics, e.g. R-square, Root Mean Square Error (RMSE), and
slope. To better assess the quality of the models, they have been tested on a
real case study using the data of DiDi Chuxing, the main on-demand ride hailing
service provider in China. In the current study, 199,584 time-slots describing
the spatio-temporal ride-hailing demand has been extracted with an
aggregated-time interval of 10 mins. All the methods are trained and validated
on the basis of two independent samples from this dataset. The results revealed
that boosted decision trees provide the best prediction accuracy (RMSE=16.41),
while avoiding the risk of over-fitting, followed by artificial neural network
(20.09), random forest (23.50), bagged decision trees (24.29) and single
decision tree (33.55).Comment: Currently under review for journal publicatio
Reservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams
The last decade has seen a surge of interest in adaptive learning algorithms
for data stream classification, with applications ranging from predicting ozone
level peaks, learning stock market indicators, to detecting computer security
violations. In addition, a number of methods have been developed to detect
concept drifts in these streams. Consider a scenario where we have a number of
classifiers with diverse learning styles and different drift detectors.
Intuitively, the current 'best' (classifier, detector) pair is application
dependent and may change as a result of the stream evolution. Our research
builds on this observation. We introduce the \mbox{Tornado} framework that
implements a reservoir of diverse classifiers, together with a variety of drift
detection algorithms. In our framework, all (classifier, detector) pairs
proceed, in parallel, to construct models against the evolving data streams. At
any point in time, we select the pair which currently yields the best
performance. We further incorporate two novel stacking-based drift detection
methods, namely the \mbox{FHDDMS} and \mbox{FHDDMS}_{add} approaches. The
experimental evaluation confirms that the current 'best' (classifier, detector)
pair is not only heavily dependent on the characteristics of the stream, but
also that this selection evolves as the stream flows. Further, our
\mbox{FHDDMS} variants detect concept drifts accurately in a timely fashion
while outperforming the state-of-the-art.Comment: 42 pages, and 14 figure
Using machine learning techniques to automate sky survey catalog generation
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data
A survey of cost-sensitive decision tree induction algorithms
The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making.  This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging.  The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field
CSNL: A cost-sensitive non-linear decision tree algorithm
This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification.
The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes.
The performance of the algorithm is evaluated by applying it to seventeen data sets and  the results are 
compared with those obtained by two well known  cost-sensitive algorithms, ICET and  MetaCost, which generate multiple trees to obtain some of the best results to date.
The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and  is considerably faster.  
The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks
Data quality affects machine learning (ML) model performances, and data
scientists spend considerable amount of time on data cleaning before model
training. However, to date, there does not exist a rigorous study on how
exactly cleaning affects ML -- ML community usually focuses on developing ML
algorithms that are robust to some particular noise types of certain
distributions, while database (DB) community has been mostly studying the
problem of data cleaning alone without considering how data is consumed by
downstream ML analytics. We propose a CleanML study that systematically
investigates the impact of data cleaning on ML classification tasks. The
open-source and extensible CleanML study currently includes 14 real-world
datasets with real errors, five common error types, seven different ML models,
and multiple cleaning algorithms for each error type (including both commonly
used algorithms in practice as well as state-of-the-art solutions in academic
literature). We control the randomness in ML experiments using statistical
hypothesis testing, and we also control false discovery rate in our experiments
using the Benjamini-Yekutieli (BY) procedure. We analyze the results in a
systematic way to derive many interesting and nontrivial observations. We also
put forward multiple research directions for researchers.Comment: published in ICDE 202
- …
