240,742 research outputs found

    An Experimental and Theoretical Analysis of a Laser Beam Propagating Through Multiple Phase Screens

    Get PDF
    An experimental and a theoretical analysis for a laser beam propagating through multiple phase screens was performed. The theoretical analysis showed that the statistics for the intensity fluctuations, which can be predicted by the HK and the I-K distributions, could be derived from a multiplicative process using statistical distributions derived from Gaussian statistics. For the single phase screen experiment, the experimental normalized moments were compared with the normalized moments of both the HK and I-K distributions . In addition, the intensity data was lowpass filtered to yield moments that are predicted by the gamma distribution. The single phase screen data was segmented into small time intervals, and all time segments with approximately the same variance were grouped together into bins to yield normalized moments for each bin that are predicted by the Rician distribution. Also, the normalized moments for two and three phase screen experiments were measured. Finally, a computer program was written to simulate K distributed noise from two independent Gaussian noise sources

    Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression

    Get PDF
    This paper addresses the problem of localizing audio sources using binaural measurements. We propose a supervised formulation that simultaneously localizes multiple sources at different locations. The approach is intrinsically efficient because, contrary to prior work, it relies neither on source separation, nor on monaural segregation. The method starts with a training stage that establishes a locally-linear Gaussian regression model between the directional coordinates of all the sources and the auditory features extracted from binaural measurements. While fixed-length wide-spectrum sounds (white noise) are used for training to reliably estimate the model parameters, we show that the testing (localization) can be extended to variable-length sparse-spectrum sounds (such as speech), thus enabling a wide range of realistic applications. Indeed, we demonstrate that the method can be used for audio-visual fusion, namely to map speech signals onto images and hence to spatially align the audio and visual modalities, thus enabling to discriminate between speaking and non-speaking faces. We release a novel corpus of real-room recordings that allow quantitative evaluation of the co-localization method in the presence of one or two sound sources. Experiments demonstrate increased accuracy and speed relative to several state-of-the-art methods.Comment: 15 pages, 8 figure

    Analysis of surface parametrizations for modern photometric stereo modeling

    Get PDF
    Tridimensional shape recovery based on Photometric Stereo (PS) recently received a strong improvement due to new mathematical models based on partial differential irradiance equation ratios. This modern approach to PS faces more realistic physical effects among which light attenuation and radial light propagation from a point light source. Since the approximation of the surface is performed with single step method, accurate reconstruction is prevented by sensitiveness to noise. In this paper we analyse a well-known parametrization of the tridimensional surface extending it on any auxiliary convex projection functions. Experiments on synthetic data show preliminary results where more accurate reconstruction can be achieved using more suitable parametrization specially in case of noisy input images

    Design and implementation of a multi-octave-band audio camera for realtime diagnosis

    Full text link
    Noise pollution investigation takes advantage of two common methods of diagnosis: measurement using a Sound Level Meter and acoustical imaging. The former enables a detailed analysis of the surrounding noise spectrum whereas the latter is rather used for source localization. Both approaches complete each other, and merging them into a unique system, working in realtime, would offer new possibilities of dynamic diagnosis. This paper describes the design of a complete system for this purpose: imaging in realtime the acoustic field at different octave bands, with a convenient device. The acoustic field is sampled in time and space using an array of MEMS microphones. This recent technology enables a compact and fully digital design of the system. However, performing realtime imaging with resource-intensive algorithm on a large amount of measured data confronts with a technical challenge. This is overcome by executing the whole process on a Graphic Processing Unit, which has recently become an attractive device for parallel computing
    • …
    corecore