15 research outputs found

    A Divergence-Free and H(div)H(div)-Conforming Embedded-Hybridized DG Method for the Incompressible Resistive MHD equations

    Full text link
    We proposed a divergence-free and H(div)H(div)-conforming embedded-hybridized discontinuous Galerkin (E-HDG) method for solving stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. In particular, the E-HDG method is computationally far more advantageous over the hybridized discontinuous Galerkin (HDG) counterpart in general. The benefit is even significant in the three-dimensional/high-order/fine mesh scenario. On a simplicial mesh, our method with a specific choice of the approximation spaces is proved to be well-posed for the linear case. Additionally, the velocity and magnetic fields are divergence-free and H(div)H(div)-conforming for both linear and nonlinear cases. Moreover, the results of well-posedness analysis, divergence-free property, and H(div)H(div)-conformity can be directly applied to the HDG version of the proposed approach. The HDG or E-HDG method for the linearized MHD equations can be incorporated into the fixed point Picard iteration to solve the nonlinear MHD equations in an iterative manner. We examine the accuracy and convergence of our E-HDG method for both linear and nonlinear cases through various numerical experiments including two- and three-dimensional problems with smooth and singular solutions. For smooth problems, the results indicate that convergence rates in the L2L^2 norm for the velocity and magnetic fields are optimal in the regime of low Reynolds number and magnetic Reynolds number. Furthermore, the divergence error is machine zero for both smooth and singular problems. Finally, we numerically demonstrated that our proposed method is pressure-robust

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions
    corecore