3 research outputs found

    Analysis of A Splitting Approach for the Parallel Solution of Linear Systems on GPU Cards

    Full text link
    We discuss an approach for solving sparse or dense banded linear systems Ax=b{\bf A} {\bf x} = {\bf b} on a Graphics Processing Unit (GPU) card. The matrix A∈RNΓ—N{\bf A} \in {\mathbb{R}}^{N \times N} is possibly nonsymmetric and moderately large; i.e., 10000≀N≀50000010000 \leq N \leq 500000. The ${\it split\ and\ parallelize}( ({\tt SaP})approachseekstopartitionthematrix) approach seeks to partition the matrix {\bf A}intodiagonalsubβˆ’blocks into diagonal sub-blocks {\bf A}_i,, i=1,\ldots,P,whichareindependentlyfactoredinparallel.Thesolutionmaychoosetoconsiderortoignorethematricesthatcouplethediagonalsubβˆ’blocks, which are independently factored in parallel. The solution may choose to consider or to ignore the matrices that couple the diagonal sub-blocks {\bf A}_i.Thisapproach,alongwiththeKrylovsubspaceβˆ’basediterativemethodthatitpreconditions,areimplementedinasolvercalled. This approach, along with the Krylov subspace-based iterative method that it preconditions, are implemented in a solver called {\tt SaP::GPU},whichiscomparedintermsofefficiencywiththreecommonlyusedsparsedirectsolvers:, which is compared in terms of efficiency with three commonly used sparse direct solvers: {\tt PARDISO},, {\tt SuperLU},and, and {\tt MUMPS}.. {\tt SaP::GPU},whichrunsentirelyontheGPUexceptseveralstagesinvolvedinpreliminaryrowβˆ’columnpermutations,isrobustandcompareswellintermsofefficiencywiththeaforementioneddirectsolvers.InacomparisonagainstIntelβ€²s, which runs entirely on the GPU except several stages involved in preliminary row-column permutations, is robust and compares well in terms of efficiency with the aforementioned direct solvers. In a comparison against Intel's {\tt MKL},, {\tt SaP::GPU}alsofareswellwhenusedtosolvedensebandedsystemsthatareclosetobeingdiagonallydominant. also fares well when used to solve dense banded systems that are close to being diagonally dominant. {\tt SaP::GPU}$ is publicly available and distributed as open source under a permissive BSD3 license.Comment: 38 page

    Recent Advances of Deep Learning in Bioinformatics and Computational Biology

    Get PDF
    Extracting inherent valuable knowledge from omics big data remains as a daunting problem in bioinformatics and computational biology. Deep learning, as an emerging branch from machine learning, has exhibited unprecedented performance in quite a few applications from academia and industry. We highlight the difference and similarity in widely utilized models in deep learning studies, through discussing their basic structures, and reviewing diverse applications and disadvantages. We anticipate the work can serve as a meaningful perspective for further development of its theory, algorithm and application in bioinformatic and computational biology
    corecore