20 research outputs found

    A Scale-Free Topology Construction Model for Wireless Sensor Networks

    Full text link
    A local-area and energy-efficient (LAEE) evolution model for wireless sensor networks is proposed. The process of topology evolution is divided into two phases. In the first phase, nodes are distributed randomly in a fixed region. In the second phase, according to the spatial structure of wireless sensor networks, topology evolution starts from the sink, grows with an energy-efficient preferential attachment rule in the new node's local-area, and stops until all nodes are connected into network. Both analysis and simulation results show that the degree distribution of LAEE follows the power law. This topology construction model has better tolerance against energy depletion or random failure than other non-scale-free WSN topologies.Comment: 13pages, 3 figure

    Self-Organization of Wireless Ad Hoc Networks as Small Worlds Using Long Range Directional Beams

    Full text link
    We study how long range directional beams can be used for self-organization of a wireless network to exhibit small world properties. Using simulation results for randomized beamforming as a guideline, we identify crucial design issues for algorithm design. Subsequently, we propose an algorithm for deterministic creation of small worlds. We define a new centrality measure that estimates the structural importance of nodes based on traffic flow in the network, which is used to identify the optimum nodes for beamforming. This results in significant reduction in path length while maintaining connectivity.Comment: Accepted to Joint workshop on complex networks and pervasive group communication (CCNet/PerGroup), in conjunction with IEEE Globecom 201

    A Self-Organization Framework for Wireless Ad Hoc Networks as Small Worlds

    Full text link
    Motivated by the benefits of small world networks, we propose a self-organization framework for wireless ad hoc networks. We investigate the use of directional beamforming for creating long-range short cuts between nodes. Using simulation results for randomized beamforming as a guideline, we identify crucial design issues for algorithm design. Our results show that, while significant path length reduction is achievable, this is accompanied by the problem of asymmetric paths between nodes. Subsequently, we propose a distributed algorithm for small world creation that achieves path length reduction while maintaining connectivity. We define a new centrality measure that estimates the structural importance of nodes based on traffic flow in the network, which is used to identify the optimum nodes for beamforming. We show, using simulations, that this leads to significant reduction in path length while maintaining connectivity.Comment: Submitted to IEEE Transactions on Vehicular Technolog
    corecore