331 research outputs found

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Performance Evaluation of Maximal Ratio Receiver Combining Diversity with Prime Interleaver for Iterative IDMA Receiver

    Get PDF
    The antenna diversity mechanism is established as the well known mechanism for reduction of probability of occurrence of communication failures (outages) caused by fades. In receiver diversity, multiple antennas are employed at the receiver side in case of transmitter diversity, multiple antennas are the integral part of transmitter section.. In this paper, Maximal Ratio Receiver Combining (MRRC) diversity technique is evaluated to mitigate the effect of fading in IDMA scheme employing random interleaver and prime interleaver with single transmit two receiving antennas in low rate coded environment. For the performance evaluation, channel is assumed to be Rayleigh multipath channel with BPSK modulation. Simulation results demonstrate the significant improvement in BER performance of IDMA with maximal ratio receiver combining (MRRC) diversity along with prime interleaver and random interleaver and it has also been observed that BER performance of prime interleaver is similar to that of random interleaver with reduced bandwidth and memory requirement at transmitter and receiver side. Keywords: Multipath Fading, MRRC diversity, Multi user detection, Interleave-Division Multiple Access (IDMA) Scheme, Random Interleaver, Prime Interleave

    Application of Diversity Techniques for Multi User IDMA Communication System

    Get PDF
    In wireless communication, fading problem is mitigated with help of diversity techniques. This paper presents Maximal Ratio Combining (MRC) diversity approach to uproot the fading problem in interleave-division multiple-access (IDMA) scheme. The approach explains receiver diversity as well as transmits diversity analysis as 1:2 and 2:1 antenna system in fading environment, no. of antennas can be increased to improve diversity order. Random interleaver as well tree based interleaver has been taken for study. Significant improvements in performance of IDMA communication is observed with application of diversity techniques. Keywords: Random Interleaver, Tree Based Interleaver, MRC diversity, IDM

    Improved IDMA for Multiple Access of 5G

    Get PDF
    Due to its good performance and low complexity, IDMA is believed to be an important technique for future radio access (FRA). However, its performances are highly affected by the interleaver design. In this paper we propose two contributions to improve the performance of the IDMA. First, we propose a new interleaver design, called "NLM interleaver", which improves the computational complexity, reduces the bandwidth consumption and the memory requirements of the system, provides the quasi-orthogonal spreading codes and interleavers with a high security and offers infinite sets of codes and interleavers based on only one parameter. Second, we propose a new user grouping algorithm based on the correlation function to improve the resources (Codes, Interleavers). All users are divided into several equal-size groups where each group's data transmitted at the same time, over the same frequencies and the same interleaver. The simulation results indicate that the proposed scheme can achieve better performances compared to the existing algorithms

    Iterative IDMA Receivers with Random and Tree Based Interleavers

    Get PDF
    In recent days, on the horizon of wireless world, newly proposed multiple access scheme known as Interleave-Division Multiple-Access (IDMA) has made its remarkable impact. Researchers all over world, are making hard marks to establish the scheme to establish its claim as potential candidate for 4th generation wireless communication systems. This paper is concerned with the performance enhancement of iterative IDMA systems under coded & uncoded environment. The performance of an interleave division multiple access (IDMA) system can be improved by the optimized power allocation techniques. Based on the optimized power allocation technique we compare the performance of coded & uncoded IDMA system with random interleaver & tree based interleaver. During the simulation, it has been observed that tree based interleaver demonstrate the similar bit error rate (BER) performance to that of random interleaver however on other fronts including bandwidth and memory requirement at transmitter and receiver ends, it outperforms the random interleavers. Keywords: Tree Based Interleaver, Random Interleaver, IDMA, linear programming, power allocation, BER

    (SI10-062) Comprehensive Study on Methodology of Orthogonal Interleavers

    Get PDF
    Interleaving permutes the data bits by employing a user defined sequence to reduce burst error which at times exceeds the minimum hamming distance. It serves as the sole medium to distinguish user data in the overlapping channel and is the heart of Interleave Division Multiple Access (IDMA) scheme. Versatility of interleavers relies on various design parameters such as orthogonality, correlation, latency and performance parameters like bit error rate (BER), memory occupancy and computation complexity. In this paper, a comprehensive study of interleaving phenomenon and discussion on numerous interleavers is presented. Also, the BER performance of interleavers using IDMA scheme is displayed

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Efficient power allocation method for non orthogonal multiple access 5G systems

    Get PDF
    One of the hot research topics for the upcoming 5G (fifth-generation) wireless communication networks is the non orthogonal multiple access (NOMA) systems, where it have attracted both industrial and academic fields to improve the existing spectral efficiency. In fact, the multiuser detection process for NOMA systems is largely affected by the power distribution of the received signals. In this paper, a new method has been proposed to control the transmit power among active users in one of the promising NOMA systems; the interleave division multiple access (IDMA) which has been adopted here for consideration. Unlike conventional methods, where tedious mathematical computations are required; a simple and direct method has been derived. The proposed method has been applied to IDMA system with different FEC codes. The obtained results show that the proposed method outperforms the conventional one as compared to optimal results
    corecore